如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为( ) A. 38° B. 39° C. 42° D. 48°
|
|
不等式 A.
|
|
一台机器有大、小齿轮用同一转送带连接,若大小齿轮的齿数分别为12和36个,大齿轮每分钟2.5×103转,则小齿轮10小时转( ) A. 1.5×106转 B. 5×105转 C. 4.5×106转 D. 15×106转
|
|
下图中各图形经过折叠后可以围成一个棱柱的是( ) A.
|
|
已知数轴上的点A到原点的距离是3,那么在数轴上到点A的距离是3所表示的数有( ) A. 4个 B. 3个 C. 2个 D. 1个
|
|
如图1,在平面直角坐标系xOy中,直线l:
(1)求n的值和抛物线的解析式; (2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值; (3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
|
|
如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E. (1)求证:直线EC为圆O的切线; (2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
|
|
已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:四边形AGBD为平行四边形; (2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论.
|
|
一个不透明的口袋里装有分别标有汉字“道”、“德”、“青”、“县”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀. (1)若从中任取一个球,球上的汉字刚好是“德”的概率为多少? (2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“道德”或“青县”的概率.
|
|
如图,已知点A(1,a)是反比例函数y1= (Ⅰ)求反比例函数的解析式; (Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围; (Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
|
|