(2005•菏泽)一块直角三角形木板的一条直角边AB长为1.5m,面积为1.5m2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)![]() |
|
(2005•黑龙江)已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD 理由:过点P作EF垂直BC,分别交AD、BC于E、F两点. ∵S△PBC+S△PAD= ![]() ![]() ![]() ![]() ![]() 又∵S△PAC+S△PCD+S△PAD= ![]() 请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明. ![]() |
|
(2005•潍坊)(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元. (1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出; (2)求出各厂所修建的自来水管道的最低的造价各是多少元? (B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d. (1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论. (2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论. ![]() |
|
(2005•新疆)在矩形ABCD中,AB=a,AD=2b(a>2b>0),E是AD的中点,BF⊥EC,垂足为F,求BF的长(用含有a、b的代数式表示).![]() |
|
(2005•重庆)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题: (1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由; (2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由; (3)在(2)的条件下,设 ![]() ![]() ![]() |
|
(2005•嘉兴)如图,矩形ABCD中,M是CD的中点.求证: (1)△ADM≌△BCM; (2)∠MAB=∠MBA. ![]() |
|
(2005•资阳)阅读以下短文,然后解决下列问题: 如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个. (1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”; (2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小; (3)若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明. ![]() |
|
(2008•张家界)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F. 求证:BE=CF. ![]() |
|
(2005•贵阳)如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点. (1)求证:四边形BDEF是菱形; (2)若AB=12cm,求菱形BDEF的周长. ![]() |
|
(2005•黄冈)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.![]() |
|