(2005•湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F. (1)请写出图中4组相等的线段(已知的相等线段除外); (2)从你写出的4组相等的线段中选一组加以证明. ![]() |
|
(2006•巴中)如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的长.![]() |
|
(2005•河北)操作示例: 对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED. 从拼接的过程容易得到结论: ①四边形BNED是正方形; ②S正方形ABCD+S正方形EFGH=S正方形BNED. 实践与探究: (1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N; ①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积; ②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形); (2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由. ![]() |
|
(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.![]() ![]() (1)求 ![]() (2)求MB、NB的长; (3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离. |
|
(2005•安徽)在一次课题学习中活动中,老师提出了如下一个问题: 点P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点M、N,使点P是线段MN的三等分点,这样的直线能够画几条? 经过思考,甲同学给出如下画法: 如图1,过点P画PE⊥AB于E,在EB上取点M,使EM=2EA,画直线MP交AD于N,则直线MN就是符合条件的直线l. 根据以上信息,解决下列问题: (1)甲同学的画法是否正确?请说明理由; (2)在图1中,能否画出符合题目条件的直线?如果能,请直接在图1中画出; (3)如图2,A1,C1分别是正方形ABCD的边AB、CD上的三等分点,且A1C1∥AD.当点P在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条? (4)如图3,正方形ABCD边界上的A1,A2,B1,B2,C1,C2,D1,D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况. ![]() |
|
(2005•郴州)附加题:E是四边形ABCD中AB上一点(E不与A、B重合). (1)如图,当四边形ABCD是正方形时,△ADE、△BCE和△CDE的面积之间有着怎样的关系?证明你的结论. ![]() (2)若四边形ABCD是矩形时,(1)中的结论是否仍然成立?为什么?ABCD是平行四边形呢? ![]() (3)当四边形ABCD是梯形时,(1)中的结论还成立吗?请说明理由. ![]() |
|
(2005•大连)如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M. 探究:线段MD、MF的关系,并加以证明. 说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步); (2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明. 注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分. ①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD. 附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明. ![]() |
|
(2005•河北)如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F. (1)如图1所示,当点E在AB边的中点位置时: ①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______; ②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是______; ③请证明你的上述两个猜想; (2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系. ![]() |
|
(2005•呼和浩特)如图,正方形ABCD的对角线AC、BD相交于点O,∠OCF=∠OBE. 求证:OE=OF. ![]() |
|
(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则![]() ![]() |
|