(2011•昭通)如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D. (1)求证:∠DAC=∠BAC; (2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么? ![]() |
|
(2005•泸州)如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E. (1)求∠ACB的度数; (2)求证:AE=CE; (3)求证:AC2=AE•AF. ![]() |
|
(2005•双柏县)已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且![]() ![]() (1)求∠BPA的度数; (2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由. ![]() |
|
(2005•太原)如图,在锐角△ABC中,BA=BC,点O是边AB上的一个动点(不与点A、B重合),以O为圆心,OA为半径的圆交边AC于点M,过点M作⊙O的切线MN交BC于点N. (1)当OA=OB时,求证:MN⊥BC; (2)分别判断OA<OB、OA>OB时,上述结论是否成立,请选择一种情况,说明理由. ![]() |
|
(2005•泰安)某“研究性学习小组”遇到了以下问题,请参与: 已知,△ABC是等边三角形且内接于⊙O,取 ![]() ![]() ![]() ![]() ![]() (1)如图1,图2,图3,M分别为 ![]()
![]() (3)对(2)中提出的猜想,依图4给出证明. |
|||||||||||||
(2005•威海)已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E. (1)求∠E的度数; (2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全). ①如图2,弦AB与弦CD交于点F; ②如图3,弦AB与弦CD不相交; ③如图4,点B与点C重合. ![]() |
|
(2005•潍坊)如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF. (1)求证:△AEF∽△FED; (2)若AD=6,DE=3,求EF的长; (3)若DF∥BE,试判断△ABE的形状,并说明理由. ![]() |
|
(2005•芜湖)如图,已知在半圆AOB中,AD=DC,∠CAB=30°,AC=2![]() ![]() |
|
(2005•宜昌)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F. (1)AB与AC的大小有什么关系?为什么? (2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由. 小明按下面的方法作出了∠MON的平分线: ①反向延长射线OM; ②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长线于点C; ③连接CB; ④以O为顶点,OA为一边作∠AOP=∠OCB. (1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由. (2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长. ![]() ![]() |
|
(2005•枣庄)如图,在⊙O中,弦AB与DC相交于点E,AB=CD. (1)求证:△AEC≌△DEB; (2)点B与点C关于直线OE对称吗?试说明理由. ![]() |
|