(2005•成都)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB. (1)求证:DE是⊙O的切线; (2)若AB=6,AE= ![]() ![]() |
|
![]() ![]() (1)求证:AE=BE; (2)求DE的长; (3)求BD的长. |
|
(2005•河南)已知⊙O的内接四边形ABCD中,AD∥BC.试判断四边形ABCD的形状,并加以证明. |
|
(2005•荆门)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF (1)求证:AB=AC; (2)若AC=3cm,AD=2cm,求DE的长. ![]() |
|
(2005•南充)如图,△ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)DF与⊙O的位置关系是______(填“相切”或“相交”). (2)若AE=14,BC=12,BF的长为______. ![]() |
|
(2005•恩施州)在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图1所示: ∵∠AOC是△ABO的外角 ∴∠AOC=∠ABO+∠BAO 又∵OA=OB ∴∠OAB=∠OBA ∴∠AOC=2∠ABO 即∠ABC= ![]() 如果∠ABC的两边都不经过圆心,如图2、3,那么结论会怎样?请你说明理由. ![]() |
|
(2005•广东)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E. (1)求证:△ACE∽△BDE; (2)求证:BD=DE恒成立; (3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围. ![]() |
|
(2005•哈尔滨)已知:如图,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA延长线于F,BO2交AD于G,连接AD. (1)求证:∠BGD=∠C; (2)若∠DO2C=45°,求证:AD=AF; (3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,求BD、BF的长. ![]() |
|
(2005•丽水)如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB. (1)求证:△PAC与△PDB是否相似______(填“是”或“否”); (2)当 ![]() ![]() ![]() |
|
(2005•辽宁)如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2, (1)若△APB为直角三角形,求PB的长; (2)若△APB为等腰三角形,求△APB的面积. ![]() |
|