曲线的参数方程为manfen5.com 满分网(t是参数),则曲线是( )
A.线段
B.双曲线的一支
C.圆
D.射线
在参数方程manfen5.com 满分网(t为参数)所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
直线:3x-4y-9=0与圆:manfen5.com 满分网,(θ为参数)的位置关系是( )
A.相切
B.相离
C.直线过圆心
D.相交但直线不过圆心
已知点M的极坐标为manfen5.com 满分网,下列所给四个坐标中能表示点M的坐标是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设函数f(x)=|x2-4x-5|,g(x)=k.
(1)在区间[-2,6]上画出函数f(x)的图象.
(2)若函数f(x)与g(x)有3个交点,求k的值;
(3)试分析函数ϕ(x)=|x2-4x-5|-k的零点个数.
已知函数manfen5.com 满分网
(1)求f(x)的定义域和值域;
(2)证明函数manfen5.com 满分网在(0,+∞)上是减函数.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
manfen5.com 满分网
(1)分别写出两种产品的收益与投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?
已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
已知集合A={x|x≤a+3},B={x|x<-1或x>5}.
(1)若a=-2,求A∩∁RB;
(2)若A⊆B,求a的取值范围.
计算:
(1)manfen5.com 满分网   
(2)manfen5.com 满分网
manfen5.com 满分网已知f(x)是定义在[-2,0∪(0,2]上的奇函数,当x>0,f(x)的图象如图所示,那么f(x)的值域是   
函数f(x)=loga(x-1)(a>0且a≠1)的反函数的图象经过点(1,4),则a=   
已知函数manfen5.com 满分网,则f(2)=    ;若f(x)=6,则x=   
函数manfen5.com 满分网的定义域为    .(用区间表示)
manfen5.com 满分网某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是( )
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x123
f (x)6.12.9-3.5
那么函数f (x)一定存在零点的区间是( )
A.(-∞,1)
B.(1,2)
C.(2,3)
D.(3,+∞)
定义集合A、B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素之和为( )
A.21
B.18
C.14
D.9
函数manfen5.com 满分网的图象是下列图象中的( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
函数manfen5.com 满分网的单调增区间是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知f(x)=ax7-bx5+cx3+2,且f(-5)=m则f(5)+f(-5)的值为( )
A.4
B.0
C.2m
D.-m+4
下列各式错误的是( )
A.30.8>30.7
B.log0..50.4>log0..50.6
C.0.75-0.1<0.750.1
D.lg1.6>lg1.4
设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
D.不能确定
与y=|x|为同一函数的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若幂函数f(x)=xa在(0,+∞)上是增函数,则( )
A.a>0
B.a<0
C.a=0
D.不能确定
化简manfen5.com 满分网的结果是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.3
D.5
设集合A={1,3},集合B={1,2,4,5},则集合A∪B=( )
A.{1,3,1,2,4,5}
B.{1}
C.{1,2,3,4,5}
D.{2,3,4,5}
manfen5.com 满分网已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当manfen5.com 满分网时,求直线l的方程;
(3)探索manfen5.com 满分网是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
设f(x)=manfen5.com 满分网为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>manfen5.com 满分网+m恒成立,求实数m的取值范围.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角C1-AB-C的余弦值.

manfen5.com 满分网
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.