满分5 > 高中数学试题 >

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的...

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
(I)利用相互独立事件的概率公式及相互对立事件的概率公式列出方程求出学生小张选修甲的概率. (II)先判断出事件A表示的实际事件,再利用互斥事件的概率公式及相互独立事件的概率公式求出事件A的概率; (II)求出ξ可取的值,求出取每个值的概率值,列出分布列,利用数学期望公式求出随基本量的期望值. 【解析】 (Ⅰ)设学生小张选修甲、乙、丙的概率分别为x、y、z 依题意得 所以学生小张选修甲的概率为0.4 (Ⅱ)若函数f(x)=x2+ξx为R上的偶函数,则ξ=0 当ξ=0时,表示小张选修三门功课或三门功课都没选. ∴P(A)=P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24 ∴事件A的概率为0.24 (Ⅲ)依题意知ξ=0,2 则ξ的分布列为 ξ 2 P 0.24 0.76 ∴ξ的数学期望为Eξ=0×0.24+2×0.76=1.52
复制答案
考点分析:
相关试题推荐
已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,1成等差数列.
(1)求数列{an}的通项公式;
(2)若an2=manfen5.com 满分网,设Cn=manfen5.com 满分网求数列{Cn}的前项和Tn
查看答案
设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为manfen5.com 满分网的值.
查看答案
下列四个命题:
①圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为2;
②直线y=kx与圆(x-cosθ)2+(y-sinθ)2=1恒有公共点;
③若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为108π;
④若棱长为manfen5.com 满分网的正四面体的顶点都在同一球面上,则该球的体积为manfen5.com 满分网
其中,正确命题的序号为    .写出所有正确命的序号) 查看答案
已知x,y满足约束条件manfen5.com 满分网,z=y-x,则z的最小值是    查看答案
直线l:x+2y-1=0通过点M(a,b)(其中a>0,b>0),则manfen5.com 满分网的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.