满分5 > 高中数学试题 >

已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,...

manfen5.com 满分网已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当manfen5.com 满分网时,求直线l的方程;
(3)探索manfen5.com 满分网是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
(1)根据l与m垂直,则两条直线的斜率之积为-1,进而根据直线过点A(-1,0),我们可求出直线的方程,将圆的圆心坐标代入直线方程验证后,即可得到结论; (2)根据半弦长、弦心距、圆半径构造直角三角形,满足勾股定理,结合,易得到弦心距,进而根据点到直线的距离公式,构造关于k的方程,解方程即可得到k值,进而得到直线l的方程; (3)根据已知条件,我们可以求出两条直线的交点N的坐标(含参数k),然后根据向量数量积公式,即可求出的值,进而得到结论. 【解析】 (1)∵l与m垂直,且,∴k1=3, 故直线l方程为y=3(x+1),即3x-y+3=0.∵圆心坐标(0,3)满足直线l方程, ∴当l与m垂直时,l必过圆心C. (2)①当直线l与x轴垂直时,易知x=-1符合题意. ②当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx-y+k=0, ∵,∴,则由,得, ∴直线l:4x-3y+4=0. 故直线l的方程为x=-1或4x-3y+4=0. (3)∵CM⊥MN,∴. ①当l与x轴垂直时,易得,则,又, ∴. ②当l的斜率存在时,设直线l的方程为y=k(x+1), 则由得,则. ∴. 综上所述,a=18与直线l的斜率无关,且.
复制答案
考点分析:
相关试题推荐
设f(x)=manfen5.com 满分网为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>manfen5.com 满分网+m恒成立,求实数m的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角C1-AB-C的余弦值.

manfen5.com 满分网 查看答案
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
查看答案
已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,1成等差数列.
(1)求数列{an}的通项公式;
(2)若an2=manfen5.com 满分网,设Cn=manfen5.com 满分网求数列{Cn}的前项和Tn
查看答案
设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.