| 有下面3个结论: ① 存在两个不同的无理数, 它们的积是整数; ② 存在两个不同的无理数, 它们的差是整数; ③ 存在两个不同的非整数的有理数, 它们的和与商都是整数. 先判断这3个结论分别是正确还是错误的, 如果正确, 请举出符合结论的两个数. 
 如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC∶CF=3∶2,则 sinB=______ 
 
 浙江省居民生活用电可申请峰谷电,峰谷电价如下表: 
 小远家5月份的高峰时间用电量为200千瓦时,低谷时间段用电量为300千瓦时,则按这种计费方式该家庭本月应付的电费为________元(精确到角) 
 通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了_____________ mm 
 如图,在由10个边长都为1的小正三角形的网格中,点 
 为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科4位骨干医师中(含有甲)抽调2人组成,则甲一定抽调到防控小组的概率是 . 
 如图,有一个正三角形图片高为1米,A是三角形的一个顶点,现在A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好与数轴上点 
 
 给出下列命题:①反比例函数 
 (A)③④ (B)①②③ (C)②④ (D)①②③④ 
 希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。下列数中既是三角形数又是正方形数的是( ) 
 (A)289 (B)1024 (C)1225 (D)1378 
 在 (A)15 (B)5 (C)6 (D)7 
 下列命题是真命题的是( ) (A)任意抛掷一只一次性纸杯,杯口朝上的概率为 (B)在一次抽奖活动中,“中奖的概率是 (C)从1至9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是 (D)一运动员投4次篮,有2次投中,则该运动员的投一次篮投中的概率一定是 
 设 
 
 下列四个三角形,与左图中的三角形相似的是( ) 
 
 如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A、B、C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在( ) 
 (A)△ABC的三边高线的交点处 (B)△ABC的三角平分线的交点处 (C)△ABC的三边中线的交点处 (D)△ABC的三边中垂线的交点处 
 如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( ) (A)4          (B) 
 不等式组   (A)相交于两点 (B)没有交点 (C)相交于一点 (D)相交于一点或没有交点 
 小华五次跳远的成绩如下(单位:m):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是( ) (A)极差是0.4 (B)众数是3.9 (C)中位数是3.98 (D)平均数是3.98 
 (满分l4分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax2+bx过A,C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,过点E作EF上AD交AD于点F,交抛物线于点G.当t为何值时,线段EG最长? 
 
 (满分l2分)小林想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如图,小林边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小林落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m(点A,E,C在同一直线上).已知小林的身高EF是1.7 m,请你帮小林求出楼高AB.(结果精确到0.1 m) 
 
 (满分l2分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25 min,于是立即步行回家取票.同时,他父亲从家里骑自行车出发以小明3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.图中线段AB,OB分别表示父子俩送票、取票的过程中,离体育馆的路程5 m与所用时间t min之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B的坐标和AB所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆? 
 
 (满分l2分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少位学生? (2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)请补全频数分布折线统计图. 
 
 
 (满分l0分)如图,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明。 
 
 (每小题8分,共16分) (1)已知a=2,b=一l,求l+ (2)某校九年级数学兴趣小组的同学开展了测量闽江宽度的活动.如图,他们在河东岸边的点A测得河西岸边的标志物B在它的正西方向,然后从点A出发沿河岸向正北方向行进550 m到点C处,测得B在点C的南偏西60°方向上,他们测得的闽江宽度是多少米?(结果保留整数,参考数据: 
 
 (每小题7分,共14分) (1)计算:︱一2 ︱+( (2)解方程: 
 如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L形模板如图放置,则矩形ABCD的周长为__________. 
 
 若(x+ 
 反比例函数y=一 
 计算:6x3÷(一2x)=___________. 
 黄金分割比是= 
 如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E, 交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 
 A.8 B.9.5 C.10 D.5 
 |