|
如果将函数
如图,D是△ABC内一点,且∠ADC=∠BDA=∠BDC,如果AD=2,BD=3,∠ABC=
如图,某人在一个建筑物(AM)的顶部A观察另一个建筑物(BN)的顶部B的仰角为
计算:
已知在△ABC中,∠C=
如图,在△ABC中,AC=5,BC=6,D是△ABC边BC上的点,且
如图,D、E、F、G是△ABC边上的点,且DE‖FG‖BC,DE,FG将△ABC分成三个部分,它们的面积比为S1∶S2∶S3=1∶2∶3,那么DE∶FG∶BC = ▼ .
如图,D、E、F是△ABC三边上的点,且DE‖BC,EF‖AB,DE∶BC=1∶3,那么EF∶AB= ▼
已知D是△ABC边AB上的点,且△ABC的面积为2010,AD∶DB=3∶2,那么△ACD的面积是 ▼
已知a∶b∶c=2∶3∶5,则
如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西
A. 南偏西
如果 A.0个 B.1个 C.2个 D.3个
如果 A.
二次函数
A.
在△ABC中,∠ACB= A.sinA B. cosA C. tanA D. cotA
如图,在△ABC中,∠ACB=
A.1对 B.2对 C.3对 D.4对
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式; (2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与 线段OC交于点G.如果EF=2OG,求点G的坐标. (3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与 AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存 在,请说明理由.
已知, 点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB; (2)如图2,若点 (3)若∠MON=60°,OB=2,射线AP交ON于点 (1) (3)
已知二次函数 (1)二次函数的顶点在 (2)若二次函数与
现场学习题 问题背景:在△ABC中,AB、BC、AC三边的长分别为 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.________ 思维拓展: (2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为 探索创新: (3)若△ABC三边的长分别为
某班同学积极响应 “阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表. 项目选择情况统计图: 训练前定时定点投篮测试进球数统计图:
训练后篮球定时定点投篮测试进球数统计表:
请你根据图表中的信息回答下列问题: (1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人; (2)补全“训练前篮球定时定点投篮测试进球数统计图; (3)训练后篮球定时定点投篮人均进球数 .
如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB. (1)判断直线BD和⊙O的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD的长.
在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,BC=2cm. (1)求∠CBD的度数; (2)求下底AB的长.
列方程(组)解应用题 国家的“家电下乡”政策激活了农民购买能力,提高了农民的生活水平。“家电下乡”的补贴标准是:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.李大叔购买了一台彩电和一台洗衣机,从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元.
当
如图,已知线段
解分式方程:
解不等式:
计算:
如图,在函数
若
|