|
△ABC中,∠ACB=90°,CD是斜边AB上的高,AB=4cm,AC=
三角形的三条边长分别为5cm,9cm,12cm,则连结各边中点所成三角形的周长为 ________cm。
如果两个相似三角形对应高的比为4:5,则这两个三角形的相似比是 ,它们的面积的比是 。
在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际周长为 。
如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______.
如图,在ΔABC中,AB=30,BC=24,CA=27, AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周长之和为( )
A、70 B、75 C、81 D、80
若⊿ABC∽⊿ A. 40° B110° C70° D30°
两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
已知两个相似三角形周长分别为8和6,则它们的面积比为( )。 (A)4:3;(B)16:9;(C)2:
如图,在矩形ABCD中,点E是AD上任意一点,则有( )
(A)△ABE的周长+△CDE的周长=△BCE的周长 (B)△ABE的面积+△CDE的面积=△BCE的面积 (C)△ABE∽△DEC (D)△ABE∽△EBC
如图,∠ABD=∠ACD,图中相似三角形的对数是( )
(A)2 (B)3 (C)4 (D)5
如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC2=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD的个数是
(A)1 (B)2 (C)3 (D)4
下列各组图形有可能不相似的是( ). (A)各有一个角是50°的两个等腰三角形 (B)各有一个角是100°的两个等腰三角形 (C)各有一个角是50°的两个直角三角形 (D)两个等腰直角三角形
某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).
(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条) (2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.
如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.
当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度; (1)列表表示I与v的关系. (2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?
如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.
(1)要使鸡场面积最大,鸡场的长度应为多少m? (2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?
现有铝合金窗框材料8米,准备用它做一个如图所示的长方形窗架( 窗架宽度AB必须小于窗户的高度BC).已知窗台距离房屋天花板2.2米.设AB为x米,窗户的总面积为S(平方米).
(1)试写出S与x的函数关系式; (2)求自变量x的取值范围.
某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x. (1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
已知二次函数y=-x2+4x-3,其图像与y轴交于点B,与x轴交于A, C 两点. 求△ABC的周长和面积.
已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是 (1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式: 伴随抛物线的关系式_________________ 伴随直线的关系式___________________ (2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________: (3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式; (4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.
若二次函数y=- (1)求这个二次函数的关系式; (2)如果要通过适当的平移,使得这个函数的图象与x轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?
求下列二次函数的图像与x轴的交点坐标,并作草图验证. (1)y=
某幢建筑物,从10 m高的窗口A,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如果抛物线的最高点M离墙1 m,离地面
A.2 m B.3 m C.4 m D.5 m
如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-
A.6 m B.12 m C.8 m D.10 m
某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( ) A.y=25x+15 B.y=2.5x+1.5 C.y=2.5x+15 D.y=25x+1.5
如图,一次函数y=-2x+3的图象与x、y轴分别相交于A、C两点,二次函数y=x2+bx+c的图象过点c且与一次函数在第二象限交于另一点B,若AC∶CB=1∶2,那么,这个二次函数的顶点坐标为( )
A.(-
如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是( ) A.m>1 B.m>-1 C.m<-1 D.m<1
把一个小球以20 m/s的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系h=20t-5t2.当h=20 m时,小球的运动时间为( ) A.20
s B.2
s C.(2
为了备战2012英国伦敦奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图5所示),则下列结论正确的是( )
①a<- A.①③ B.①④ C.②③ D.②④
|