|
(2011•北京)下列图形中,即是中心对称又是轴对称图形的是( ) A、等边三角形 B、平行四边形 C、梯形 D、矩形
(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A、66.6×107 B、0.666×108 C、6.66×108 D、6.66×107
(2011•北京)﹣ A、﹣ C、﹣
(本小题满分14分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、( (1)若抛物线过点C,A, (2)求平行四边形ABOC和平行四边形 (3)点M是第一象限内抛物线上的一动点,间:点M在何处时△
(本小题满分12分) 如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。 (1)求证:CD为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
(本小题满分10分) 在复习《反比例函数》一课时,同桌的小明和小芳有一个间题观点不一致,小明认为如果两次分别从l到6六个整数中任取一个数,第一个数作为点 (1)试用列表或画树状图的方法列举出所有点 (2)分别求出点
(本小题满分8分) 如图,在梯形ABCD中,DC∥AB,AD=BC, BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形。
(本小题满分8分) 如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(
(本小题满分8分) 某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为i00分)如图所示.
(1)根据图示填写下表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好; (3)计算两班复赛成绩的方差。
(本小题满分8分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°。求该古塔BD的高度(
(本题共两小题.每小题6分.满分l2分) (1)计算:
(2)求满足不等式组的
如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6, EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为________。
如图,在平面直角坐标系中有一正方形AOBC,反比例函数
已知
方程组
因式分解
一个角的补角是36°35’.这个角是________。
二次函数
如图,从边长为( A.
如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( ) A.
已知直线 A.
如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( ) A.
分式方程 A.
函数 A
如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )。:
我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( ) A.
A.
图10是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1. (1)证明:△ABE≌△CBD; (2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形); (3)小红发现AM=MN=NC,请证明此结论; (4)求线段BD的长.
如图9,已知抛物线经过定点A(1,0),它的顶点P是y轴正半轴上的一个动点,P点关于x轴的对称点为P′,过P′ 作x轴的平行线交抛物线于B、D两点(B点在y轴右侧),直线BA交y轴于C点.按从特殊到一般的规律探究线段CA与CB的比值: (1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CA与CB的比值; (2)若P点坐标为(0,m)时(m为任意正实数),线段CA与CB的比值是否与⑴所求的比值相同?请说明理由.
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少? (2)设每月用水量为 (3)小英家3月份用水24吨,她家应交水费多少元?
|