|
一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有 个。
制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为_______
等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合
已知P是⊙O外一点,PA切⊙O于A, PB切⊙O于B。若PA=6,则PB=
请写出有一个根为3的一元二次方程:____________________
化简:
计算:
已知,m、n分别是 A.
用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。上述四个方法中,正确的个数是 ( )
A.1个 B.2个 C.3个 D.4个
如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于 ( )
A.15° B.20° C.30° D.45°
某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是( ) A.
若扇形的弧长是16cm,面积是56cm2,则它的半径是 ( ) A.2.8cm B.3.5cm C.7cm D.14cm
如图, A.
已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则 m的取值范围是 ( ) A.
方程 x(x+2)=(x+2)的解是 ( ) A.x=1 B.x1=0 x2=-2 C.x1=1 x2=-2 D.x1=1 x2=2
如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A B C D
二次根式 A.x≤
(满分13分)如图12.1,已知抛物线经过坐标原点O和x轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且BC=1,AD=2,AB=3. (1)求m的值及该抛物线的函数关系式; (2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示). ① 当t为何值时,△PNC是以PN为底边的等腰三角形 ; ② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(满分11分)如图11,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连结CF. (1)求证:AF=CD; (2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论; (3)在(2)的条件下,求sin∠ABF的值.
(满分8分)在如图10所示的正方形网格中,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(-1,-1). (1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C,并写出点B2的坐标; (3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出放大后的△AB3C3.
(满分8分)为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计,统计结果如图9.1、图9.2所示.
根据上面提供的信息,回答下列问题: (1)本次抽查了多少名学生的体育成绩; (2)补全图9.1,求图9.2中D分数段所占的百分比; (3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数.
(满分8分)某市为治理污水,需要铺设一段全长为300米的污水排放管道.铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用15天完成这一任务.求原计划每天铺设管道的长度.
(满分8分,每小题4分)] (1)计算:(-3)2+
如图8,AB是⊙O的直径,CD是⊙O的切线,C为切点,若∠B=25°,则∠D等于 度.
如图7,矩形纸片ABCD,AB=6,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B的对应点B′恰好落在AC上,则AC的长是 .
已知关于x的一元二次方程x2-2x-k=0的一个根为3,则它的另一根为 .
若a-2b=-3,则代数式5-a+2b的值为 .
已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如下表所示 则不等式kx+b<0的解集是 A. x>1 B. x<1 C. x>0 D. x<0
袋中有5个白球,x个红球,从中随机摸出一个球,恰为红球的概率为 A. 25 B. 20 C. 15 D. 10
如图6,⊙O的直径AB垂直于弦CD,垂足为E,若∠BAD=20°,则∠BOC等于 A.20° B.40° C.50° D.60°
|