|
在实数 A、1个 B、2个 C、3个 D、4个
(12分)如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量 (2)若该商场获得利润为 (3)若该商场获得利润不低于500元,试确定销售单价
(8分)如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。(1)在如图的坐标系中求抛物线的解析式。(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
(8分)如图,在 (2)求过
(8分)改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x年的国民生产总值为y亿元,y与x之间的关系是
(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米. (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围) (2)当x为何值时,S有最大值?并求出最大值.
(6分)已知抛物线 图所示.(1)求b、c的值; (2)求y的最大值;(3)写出 当
(6分)已知二次函数 (1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标;
炮弹从炮口射出后,飞行的高度
已知二次函数
老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当
有一个抛物线形拱桥,其最大高度为
已知二次函数
已知抛物线y=x2-3x-4,则它与x轴的交点坐标是 .
不论x为何值,函数 A.
若 A、第一象限 B、第二象限 C、第三象限 D、第四象限
已知抛物线 A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.一、二、三、四象限.
把二次函数 A、
如果抛物线 A、8 B、14 C、8或14 D、-8或-14
若二次函数 A、
二次函数 A、2
B、1 C、-3
D、
已知二次函数 A、最小值0 B、最大值 1 C、最大值2 D、有最小值
下列四个函数中,y的值随着x值的增大而减小的是( ) A、
二次函数 A、12 B、11 C、10 D、9
(12分)如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量 (2)若该商场获得利润为 (3)若该商场获得利润不低于500元,试确定销售单价
(8分)如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。(1)在如图的坐标系中求抛物线的解析式。(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
(8分)如图,在
(8分)改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x年的国民生产总值为y亿元,y与x之间的关系是
|