|
(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式; (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
(本题满分10分)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;
(2)若AC=3,求PC的长.
(本题满分10分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路. 现新修一条路AC到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:
(本题满分10分为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.
根据以上信息,解答下列问题: (1)求本次抽取了多少份作品,并补全两幅统计图; (2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
(本题满分8分)一个口袋中有4个小球,这4个小球分别标记为1,2,3,4. (1)随机模取一个小球,求恰好模到标号为2的小球的概率; (2)随机模取一个小球然后放回,再随机模取一个小球,求两次模取的小球的标号的和为3的概率.
(本题满分8分)2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题. (1)求这份快餐中所含脂肪质量; (2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(本题满分8分) 如图,已知一次函数与反比例函数的图象交于点P(-2,-1)和点Q(1,m) (1)求这两个函数的关系式;
(本题满分8分) (1)计算:
如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是 ▲ .
如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移 ▲ 个单位时,它与x轴相切.
.设函数
某种商品的标价为200元,为了吸引顾客,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 ▲ 元.
.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ▲ .
小华在解一元二次方程
若
计算:
分解因式:
使
下列图形中,阴影部分的面积为2的有( ▲ )个
A.4个 B.3个 C.2个 D.1个
.若反比例函数 A.m>0 B.m<0 C.m>1 D.m<1
“从一布袋中随机摸出1球恰是黄球的概率为 A.摸球5次就一定有1次摸中黄球 B.摸球5次就一定有4次不能摸中黄球 C.如果摸球次数很多,那么平均每摸球5次就有一次摸中黄球 D.布袋中有1个黄球和4个别的颜色的球
不等式组
实数—2、0.3、 A.2 B.3 C.4 D.5
已知空气的单位体积质量为0.00124 克/厘米3,0.00124用科学记数法表示为( ▲ ) A.1.24×102 B.1.24×103 C.1.24×10-2 D.1.24×10-3
下列运算正确的是 ( ▲ ) A. C.
下列各数中,最大的数是 ( ▲ ) A.-1 B.0 C.1 D.
(本题满分12分)如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b 与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO= (1)OH的长度等于___________;k=___________,b=____________; (2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶
(本题满分12分) 小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:
(1)小王有哪几种养殖方式? (2)哪种养殖方案获得的利润最大? (3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
(本题满分10分)如图,已知 (1)求证: (2)若
(本题满分10分)如图,一次函数y=k1x+b的图象经过 A(0,-2),B(1,0)两点,与反比例函数 图象在第一象限内的交点为M,若△OBM的面积为2. (1)求一次函数和反比例函数的表达式; (2)在x轴上是否存在点P,使AM⊥MP?若存在, 求出点P的坐标;若不存在,说明理由.
|