如图,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2. (1)求证:AC⊥平面BB1C1C; (2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
|
|
对于在区间[a,b]上有意义的两个函数m(x)与n(x),如果对于区间[a,b]中的任意x均有|m(x)-n(x)|≤1,则称m(x)与n(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,若函数m(x)=x2-3x+4与n(x)=2x-3在区间[a,b]上是“密切函数”,则b-a的最大值为 .
|
|
设函数f(x)= (a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为 .
|
|
如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,DC,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,则该扇形的半径OA的长为 .
|
|
可以证明:“正三角形内任意一点到三边的距离之和是一个定值”,我们将空间与平面进行类比,可得结论: .
|
|
已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12= .
|
|
连续两次掷一颗质地均匀的骰子,记出现向上的点数分别为m,n,设向量a=(m,n),b=(3,-3),则a与b的夹角为锐角的概率是 .
|
|
如图,已知F1,F2是椭圆C: (a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为 .
|
|
学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为 .
|
|