相关试题
当前位置:首页 > 高中数学试题
已知α,β是相异两平面,m,n是相异两直线,则下列命题中不正确的是( )
A.若m∥n,m⊥α,则m⊥α
B.若m⊥α,m⊥β,则α∥β
C.若m⊥α,m⊂β,则α⊥β
D.若m∥α,α∩β=n,则m∥n
若ω=-manfen5.com 满分网,则ω2+ω+1等于( )
A.0
B.1
C.manfen5.com 满分网
D.manfen5.com 满分网
若集合A={y|y=lgx},B={x|y=manfen5.com 满分网},则A∩B为( )
A.[0,1]
B.(0,1]
C.[0,∞)
D.(-∞,1]
已知函数manfen5.com 满分网,g(x)=clnx+b,且manfen5.com 满分网是函数f(x)的极值点.
(1)求实数a的值;
(2)若方程f(x)-m=0有两个不相等的实数根,求实数m的取值范围;
(3)若直线l是函数f(x)的图象在点(2,f(2))处的切线,且直线l与函数g(x)的图象相切于点P(x,y),x∈[e-1,e],求实数b的取值范围的集合.
已知半圆x2+y2=4(y≥0),动圆与此半圆相切且与x轴相切.
(1)求动圆圆心的轨迹,并画出其轨迹图形.
(2)是否存在斜率为manfen5.com 满分网的直线l,它与(1)中所得轨迹的曲线由左到右顺次交于A、B、C、D四点,且满足|AD=2|BC|.若存在,求出l的方程;若不存在,说明理由.
已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=manfen5.com 满分网N*),其中a1=1.
(Ⅰ)求数列{ak}的通项公式;
(Ⅱ)对任意给定的正整数n(n≥2),数列{bk}满足manfen5.com 满分网(k=1,2,…,n-1),b1=1,求b1+b2+…+bn
如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:FC∥平面EAD;
(Ⅲ)求二面角A-FC-B的余弦值.

manfen5.com 满分网
有一种舞台灯,外形是正六棱柱ABCDEF-A1B1C1D1E1F1,在其每一个侧面上(不在棱上)安装5只颜色各异的彩灯,上下底面不安装彩灯,假若每只灯正常发光的概率是0.5,若一个面上至少有3只灯发光,则不需要维修,否则需要更换这个面.假定更换一个面需100元,用ξ表示维修一次的费用.
(1)求侧面ABB1A1需要维修的概率;
(2)写出ξ的分布列,并求ξ的数学期望.
已知向量manfen5.com 满分网=(sinx,cosx),manfen5.com 满分网=(6sinx+cosx,7sinx-2cosx),设函数f(x)=manfen5.com 满分网manfen5.com 满分网-2.
(1)求函数f(x)的最大值,并求取得最大值时x的值;
(2)在A为锐角的△ABC中,A、B、C的对边分别为a、b、c,若f(A)=4且△ABC的面积为3,manfen5.com 满分网,求a的值.
选作题(请在下列2小题中选做一题,全做的只计算第(1)题得分)
(1)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为   
(2)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是   
共1028964条记录 当前(79754/102897) 首页 上一页 79749 79750 79751 79752 79753 79754 79755 79756 79757 79758 79759 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.