如果命题“p且q”为真命题,那么下列结论中正确的是( ) ①“p或q”为真命题; ②“p或q”为假命题; ③“非p或非q”为真命题; ④“非p或非q”为假命题. A.①③ B.①④ C.②③ D.②④ |
|
若{an}为等差数列,a3=4,a8=19,则数列{an}的前10项和为( ) A.230 B.140 C.115 D.95 |
|
已知全集U=R,集合A=![]() ![]() A.ϕ B.[0,1) C.[0,2] D.(1,2] |
|
已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+![]() (1)求数列{an}的通项公式; (2)试确定t的值,使得数列{bn}为等差数列; (3)当{bn}为等差数列时,对任意正整数k,在ak与ak+1之间插入2共bk个,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tn=2cm+1的所有正整数m的值. |
|
在直角坐标系xOy中,椭圆C1:![]() ![]() (1)求椭圆C1的方程; (2)设 ![]() |
|
某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为![]() (1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域; (2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大? |
|
如图,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO=2,EA∥PO. (1)求证:BD⊥平面EAC; (2)求二面角E-AC-P的平面角的余弦值. ![]() |
|
“上海世博会”于2010年5月1日至10月31日在上海举行,世博会“中国馆•贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄,海纳百川的重要文化载体,为此,上海世博会事物协调局举办“中国2010年上海世博会”中国馆•贵宾厅艺术品方案征集活动,某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应证,假设代表中有中国画、书法、油画入选“中国馆•贵宾厅”的概率均为![]() ![]() (1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆•贵宾厅”的概率; (2)设该地美术馆选送的四件代表作中入选“中国馆•贵宾厅”的作品件数为随机变量ξ,求ξ的数学期望. |
|
已知向量![]() ![]() ![]() ![]() (1)求函数f(a)的最大值; (2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3 ![]() |
|
给定项数为m (m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,3,…,m),这样的数列叫”0-1数列”.若存在一个正整数k (2≤k≤m-1),使得数列{an}中某连续k项与该数列中另一个连续k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”.例如数列{an}:0,1,1,0,1,1,0,因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”. (1)已知数列{bn}:0,0,0,1,1,0,0,1,1,0,则该数列 “5阶可重复数列”(填“是”或“不是”); (2)要使项数为m的所有”0-1数列”都为“2阶可重复数列”,则m的最小值是 . |
|