四边形ABCD中,![]() (1)若 ,试求x与y满足的关系式;(2)满足(1)的同时又有 ,求x,y的值及四边形ABCD的面积. |
|
|
已知函数f(x)=2cosx(sinx-cosx)+1,x∈R. (Ⅰ)求函数f(x)的最小正周期; (Ⅱ)求函数f(x)在区间 上的最小值和最大值. |
|
已知函数f(x)=sin + cos ,x∈R.(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[-2π,2π]上的单调递增区间; (2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象. |
|
|
给出命题: (1)在平行四边形ABCD中, .(2)在△ABC中,若 ,则△ABC是钝角三角形.(3)在空间四边形ABCD中,E,F分别是BC,DA的中点,则 .以上命题中,正确的命题序号是 . |
|
已知 =(3,1), =(sinα,cosα),且 ∥ ,则 = .
|
|
已知tanα=2, ,则tanβ= .
|
|
| 设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是 . | |
|
有下列四种变换方式: ①向左平移 ,再将横坐标变为原来的 ; ②横坐标变为原来的 ,再向左平移 ;③横坐标变为原来的 ,再向左平移 ; ④向左平移 ,再将横坐标变为原来的 ;其中能将正弦曲线y=sinx的图象变为 的图象的是( )A.①和② B.①和③ C.②和③ D.②和④ |
|
函数y=2sin(2x- )的单调增区间为( )A.[kπ- ,kπ+ ](k∈Z)B.[2kπ- ,2kπ+ ](k∈Z)C.[kπ- ,kπ+ ](k∈Z)D.[2kπ- ,2kπ+ ](k∈Z) |
|
如图,在△ABC中,AD、BE、CF分别是BC、CA、AB上的中线,它们交于点G,则下列各等式中不正确的是( )A. ![]() B. ![]() C. ![]() D. ![]() |
|
