甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为( ) A.8.1×10-9米 B.8.1×10-8米 C.81×10-9米 D.0.81×10-7米 |
|
下列运算正确的是( ) A.x2•x3=x6 B.(x2)3=x5 C.(-0.5)-1=-2 D.x8÷x2=x4 |
|
如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为![]() (1)求此抛物线的解析式; (2)求点P的坐标及n关于m的函数关系式; (3)连接OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值. ![]() |
|
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.![]() (1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想; (2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由; (3)若AC=BC=4,设△EFP平移的距离为x,当0≤x≤8时,△EFP与△ABC重叠部分的面积为S,请写出S与x之间的函数关系式,并求出最大值. |
|
某厂工人小王某月工作的部分信息如下: 信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表:
根据以上信息,回答下列问题: (1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分; (2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件. |
||||||||||
已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象. (1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围; (2)当它们行驶到与各自出发地的距离相等时,用了 ![]() (3)在(2)的条件下,求它们在行驶的过程中相遇的时间. ![]() |
|
如图,在矩形ABCD中,AB=9,AD=3![]() ![]() (1)求∠CQP的度数; (2)当x取何值时,点R落在矩形ABCD的AB边上; (3)①求y与x之间的函数关系式; ②当x取何值时,重叠部分的面积等于矩形面积的 ![]() |
|
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE. (1)判断直线AC与△DBE外接圆的位置关系,并说明理由; (2)若AD=6,AE=6 ![]() ![]() |
|
体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次. (1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明); (2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由. |
|
图1是某市2007年2月5日至14日每天最低气温的折线统计图.![]() (1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图; (2)在这10天中,最低气温的众数是______,中位数是______,方差是______. |
|