某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
测试项目 | 测试成绩/分 | 甲 | 乙 | 丙 | 笔试 | 75 | 80 | 90 | 面试 | 93 | 70 | 68 | 根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分. (1)请算出三人的民主评议得分; (2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01) (3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?
|
|
某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
景点 | A | B | C | D | E | 原价(元) | 10 | 10 | 15 | 20 | 25 | 现价(元) | 5 | 5 | 15 | 25 | 30 | 平均日人数(千人) | 1 | 1 | 2 | 3 | 2 | (1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的? (2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的? (3)你认为风景区和游客哪一个的说法较能反映整体实际?
|
|
已知如图,一次函数y=kx+b的图象与反比例函数 的图象相交于A、B两点. (1)利用图中条件,求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
|
|
如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°. (1)求证:△ACF∽△BEC; (2)设△ABC的面积为S,求证:AF•BE=2S.
|
|
某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. (1)求该同学看中的随身听和书包的单价各是多少元? (2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
|
|
解不等式组,并把其解集在数轴上表示出来: .
|
|
化简求值: ,其中 .
|
|
计算: .
|
|
如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为 m.(结果精确到0.1m)
|
|
党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番.在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x,那么x满足的方程为 .
|
|