如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3). (1)试求出抛物线的解析式; (2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标; (3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形? ![]() |
|
如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去. (1)快艇从港口B到小岛C需要多少时间? (2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇? ![]() |
|
附加题:如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高. (1)求证:四边形AEFD是平行四边形; (2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式. ![]() |
|
在物理实验中,当电流在一定时间段内正常通过电子元件时,每个电子元件的状态有两种可能:通电或断开,并且这两种的可能性相等.![]() (1)如图1,当只有一个电子元件时,A、B之间的电流通过概率是______; (2)如图2,当有两个电子元件a、b串联时,请用树状图(或列表格)表示图中A、B之间的电流能否通过的所有可能情况,求出A、B之间的电流通过的概率; (3)如图3,当有三个电子元件串联时,猜想A,B之间电流通过的概率是______. |
|
附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由; (3)求△BEC与△BEA的面积之比. ![]() |
|
如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点0; (2)求出△ABC与△A′B′C′的位似比; (3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5. ![]() |
|
(1)已知点A(2,3),将线段OA绕点O逆时针旋转90°得到对应线段OA′,则点A′关于直线y=1对称的点的坐标是______; (2)将直线y=2x+3向右平移2个单位长度得到直线L1,则直线L1关于直线y=1对称的直线的解析式为______; (3)写出直线y=kx+b关于直线y=1对称的直线的解析式______. |
|
一个长方形足球场的长为xm,宽为70m.如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间) |
|
一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…,],且每秒移动一个单位,那么第80秒时质点所在位置的坐标是 .![]() |
|
中新网4月26日电,据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感).若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了 人,若不加以控制,以这样的速度传播下去,经三轮传播,将有 人被感染. | |