一个多边形的内角是1440°,求这个多边形的边数是( ) A.7 B.8 C.9 D.10
|
|
如图四个手机应用图标中是轴对称图形的是( ) A.
|
|
下列运算正确的是 ( ) A. a2·a3=a6 B. a8÷a4=a2 C. a3+a3=2a6 D. (a3)2=a6
|
|
﹣2的绝对值是 A. 2 B. ﹣2 C.
|
|
如图1,在平面直角坐标系xOy中,直线l:
(1)求n的值和抛物线的解析式; (2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值; (3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
|
|
我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”. 特例感知: (1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”. ①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC; ②如图3,当∠BAC=90°,BC=8时,则AD长为____. 猜想论证: (2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
|
|
某商品现在售价为每件40元,每天可卖200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在x(50≤x≤90)天内,当天的售价都是90元,销售仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售商品的当天利润为y元. (1)求出y与x的函数关系式; (2)销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天当天销售利润不低于4800元?
|
|
如图,在△ABC中,以AC边为直径作⊙O交BC边于点D,交AB于点G,且D是BC中点,DE⊥AB,交AB于点E,交AC的延长线交于点F. (1)求证:直线EF是⊙O的切线. (2)若CF=3,cos∠CAB=
|
|
如图,两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍船只停在C处海域,AB=60( (1)分别求出AC,BC(结果保留根号) (2)已知在灯塔D周围80海里范围内有暗礁群,在A处海监船沿AC前往C处盘看,图中有无触礁的危险?请说明理由.
|
|
在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢; (1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果. (2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.
|
|