圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是( )
A.相离
B.相交
C.外切
D.内切
下列命题中,假命题是( )
A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥β
B.若平面α内的任一直线平行于平面β,则α∥β
C.若α⊥β,任取直线l⊂α,必有l⊥β
D.若α∥β,任取直线l⊂α,必有l∥β
如图,正方体ABCD-A1B1C1D1中,异面直线BC1和CD1所成角为( )
manfen5.com 满分网
A.30°
B.45°
C.60°
D.90°
如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
过点(-1,3)且垂直于直线x-2y+3=0的直线方程为( )
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0
直线y=-manfen5.com 满分网x-1的倾斜角是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知函数manfen5.com 满分网在[3,+∞)上是增函数,
(1)求实数a的取值范围;
(2)在(1)的结论下,设manfen5.com 满分网,x∈[0,ln3],求函数g(x)的最小值.
设F1、F2分别是椭圆manfen5.com 满分网+y2=1的左、右焦点.
(1)若P是该椭圆上的一个动点,求向量乘积manfen5.com 满分网manfen5.com 满分网的取值范围;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
三棱锥A-BCD,其中△BCD为直角三角形,∠BDC=90°,AB=AC=AD=5,BD=4,CD=manfen5.com 满分网
(1)求证:面BCD⊥面ABC
(2)求二面角C-AD-B的平面角.

manfen5.com 满分网
已知集合A=[2,log2t],集合B={x|x2-8x+12≤0},x,t∈R,且A⊆B.
(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为1,试求t的值.
(2)某个函数f(x)的值域是B,且f(x)∈A的概率不小于manfen5.com 满分网,试确定t的取值范围.
若向量manfen5.com 满分网,其中ω>0,记函数manfen5.com 满分网,若函数f(x)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差为π的等差数列.
(1)求f(x)的表达式及m的值;
(2)将函数y=f(x)的图象向左平移manfen5.com 满分网,得到y=g(x)的图象,当manfen5.com 满分网时,g(x)=cosα的交点横坐标成等比数列,求钝角α的值.
已知矩形ABCD中AB=4,BC=3,将其沿对角线AC折起,形成四面体ABCD,则以下命题正确的是:    (写出所有正确命题的序号)
①四面体ABCD体积最大值为manfen5.com 满分网
②四面体ABCD中,AB⊥CD;
③四面体ABCD的侧视图可能是个等腰直角三角形;
④四面体ABCD的外接球表面积是25π.
设函数f(x)=manfen5.com 满分网(a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为   
manfen5.com 满分网如图,已知F1,F2是椭圆C:manfen5.com 满分网(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为   
manfen5.com 满分网一几何体的三视图如图所示,则这个几何体的体积为   
直线ax+by+c=0与圆x2+y2=4相交于两点A、B,若c2=a2+b2,O为坐标原点,则manfen5.com 满分网=   
公差不为零的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7,则log2(b6b8)的值为   
已知a,b,c为△ABC的三个内角A,B,C的对边,向量manfen5.com 满分网=(manfen5.com 满分网,-1),manfen5.com 满分网=(cosA,sinA).若manfen5.com 满分网manfen5.com 满分网,且acosB+bcosA=csinC,则角B=   
已知函数manfen5.com 满分网,则函数F(x)=xf(x)-1的零点个数为( )
A.4
B.5
C.6
D.7
已知双曲线manfen5.com 满分网,其右焦点为F,P是其上一点,点M满足manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网的最小值为( )
A.3
B.manfen5.com 满分网
C.2
D.manfen5.com 满分网
给出如图的一个直角三角形数阵;满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,如果记第一行的数为a1,第二行的第一个数为a2,第二个数为a3,第三行的第一个数为a4,…,则a83=( )manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.2
D.1
正四棱锥相邻两个侧面所成的二面角的平面角为α,侧面与底面的二面角的平面角为β,则2cosα+cos2β的值是( )
A.1
B.2
C.-1
D.manfen5.com 满分网
设P、Q为△ABC所在平面内的两点,且manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网则△ABP的面积与△ABQ的面积之比为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
函数f(x)=xcosx的导函数f′(x)在区间[-π,π]上的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设二元一次不等式组manfen5.com 满分网所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是( )
A.[1,3]
B.[2,manfen5.com 满分网]
C.[2,9]
D.[manfen5.com 满分网,9]
已知manfen5.com 满分网,则manfen5.com 满分网的值是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知集合A={y|y=log2x,manfen5.com 满分网<x<2},B={y|y=(manfen5.com 满分网x,0<x<1},则A∩B为( )
A.manfen5.com 满分网
B.(0,2)
C.manfen5.com 满分网
D.manfen5.com 满分网
已知z=(1-2sinθ)+(2cosθ+manfen5.com 满分网)i(0<θ<π)是纯虚数,则θ=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网manfen5.com 满分网
已知函数manfen5.com 满分网
(I)当a=1时,求f(x)在x∈[1,+∞)最小值;
(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;
(Ⅲ)求证:manfen5.com 满分网(n∈N*).
如图,平面EAD⊥平面ABFD,△AED为正三角形,四边形ABFD为直角梯形,且∠BAD=90°,
AB∥DF,AD=a,AB=manfen5.com 满分网a,DF=manfen5.com 满分网
(I)求证:EF⊥FB;
(II)求二面角A-BF-E的大小;
(Ⅲ)点P是线段EB上的动点,当∠APF为直角时,求BP 的长度.

manfen5.com 满分网
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.