一位母亲记录了儿子从3岁到9岁的身高,数据如表,由此建立的身高与年龄的回归模型为manfen5.com 满分网.以此模型预测这个孩子10岁时的身高,则正确的叙述是( )
年龄/岁3456789
身高/cm94.8104.2108.7117.8124.3130.8139.0

A.一定是145.83cm
B.在145.83cm以上
C.在145.83cm左右
D.在145.83cm以下
采用系统抽样的方法从个体数目为83的总体中抽取一个样本容量为10的样本,则每个个体被抽到的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
manfen5.com 满分网下面为一个求20个数的平均数的程序,在横线上应填充的语句为( )
A.i>20
B.i<20
C.i>=20
D.i<=20
在统计中,样本的标准差可以近似地反映总体数据的( )
A.平均状态
B.分布规律
C.离散程度
D.最大值和最小值
下列给出的赋值语句中正确的是( )
A.3=A
B.M=-M
C.B=A=2
D.x+y=0
已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2manfen5.com 满分网,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当manfen5.com 满分网manfen5.com 满分网恒为定值时E点的坐标及定值.
已知ABCD-A1B1C1D1是边长为1的正方体,求:
(1)直线AC1与平面AA1B1B所成角的正切值;
(2)二面角B-AC1-D的大小;
(3)求点A到平面BDC1的距离.

manfen5.com 满分网
已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值.
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.
高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)根据上面图表,①②③④处的数值分别为________________________
(2)在所给的坐标系中画出[85,155]的频率分布直方图;
(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的概率.

manfen5.com 满分网
如图是某种算法的程序,回答下面的问题:
(1)写出输出值y关于输入值x的函数关系式f (x);
(2)当输出的y值小于manfen5.com 满分网时,求输入的x的取值范围.

manfen5.com 满分网
某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,则不同的分配方案有     种.
用秦九韶算法计算多项式f(x)=8x4+5x3+3x2+2x+1在x=2时的值时,v2=   
若某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,则选出的志愿者中男女生均不少于1名的概率是     .(结果用最简分数表示)
某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是   
点P(2,-3,-5)关于y轴对称的点的坐标为   
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得manfen5.com 满分网=4a1,则manfen5.com 满分网的最小值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.不存在
已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
如图所示,输出的n为( )
manfen5.com 满分网
A.10
B.11
C.12
D.13
已知α,β,γ是平面,a,b是两条不重合的直线,下列说法正确的是( )
A.“若a∥b,a⊥α,则b⊥α”是随机事件
B.“若a∥b,a⊂α,则b∥α”是必然事件
C.“若a⊥γ,β⊥γ,则α⊥β”是必然事件
D.“若a⊥α,a∩b=P,则b⊥α”是不可能事件
某人5次上班途中所花的时间(单位:分钟)分别为8,12,10,11,9.若这组数据的平均数为x,方差为y,则|x-y|的值为( )
A.0
B.2
C.4
D.8
如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0-9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有( )
manfen5.com 满分网
A.a1>a2
B.a2>a1
C.a1=a2
D.a1,a2的大小不确定
四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为( )
A.A44A22
B.A55A22
C.A55
D.manfen5.com 满分网
从1到10的正整数中,任意抽取两个相加所得和为奇数的不同情形的种数是( )
A.10
B.15
C.20
D.25
从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是( )
A.0.62
B.0.38
C.0.7
D.0.68
下列叙述错误的是( )
A.若事件A发生的概率为P(A),则0≤P(A)≤1
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲抽到有奖奖券的可能性相同
D.某事件发生的概率是随着试验次数的变化而变化的
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.
(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;
(II)设函数manfen5.com 满分网是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.
已知定义域为R的奇函数f(x)满足manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
已知函数manfen5.com 满分网
(1)若manfen5.com 满分网,求函数f(x)最大值和最小值;
(2)若方程f(x)+m=0有两根α,β,试求α•β的值.
已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∪B=B,求a的值;
(2)若A∩B=B,求a的值.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.