如图是某算法的程序框图,则程序运行后输出的结果是    manfen5.com 满分网
双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为   
在边长为2的正方形内随机地取一点,则该点到正方形中心的距离小于1的概率为   
抛物线y=2x2上两点A(x1,y1)、B(x2,y2)关于直线y=x+m对称,且x1•x2=-manfen5.com 满分网,则m等于( )
A.manfen5.com 满分网
B.2
C.manfen5.com 满分网
D.3
若点O和点F分别为椭圆manfen5.com 满分网的中心和左焦点,点P为椭圆上的任意一点,则manfen5.com 满分网的最大值为( )
A.2
B.3
C.6
D.8
已知抛物线顶点在原点,焦点为双曲线manfen5.com 满分网的右焦点,则此抛物线的方程是( )
A.y2=2
B.y2=4
C.y2=10
D.y2=20
某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235
销售额y(万元)49263954
  根据上表可得回归方程manfen5.com 满分网中的manfen5.com 满分网为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元
已知命题p:∃x∈R,使manfen5.com 满分网;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是( )
A.②③
B.②④
C.③④
D.①②③
样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2
给出下列四个命题:其中真命题的是( )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“∃x∈R,x2+x-1<0”的否定是“∀x∈R,x2+x-1>0”
C.命题“若x=y”,则sinx=siny”的逆否命题为真命题
D.“x=-1”是“x2-5x-6=0”的必要不充分条件
椭圆x2+4y2=1的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知实数c≥0,曲线manfen5.com 满分网与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为manfen5.com 满分网,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当manfen5.com 满分网时,求证:manfen5.com 满分网
已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-manfen5.com 满分网
(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).
等比数列{an}单调递增,且满足:a1+a6=33,a3a4=32.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:b1=1且n≥2时,manfen5.com 满分网成等比数列,Tn为{bn}前n项和,manfen5.com 满分网,证明:2n<c1+c2+…+cn<2n+3(n∈N*).
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图象上任意一点P关于原点的对称点Q的轨迹恰好是函数y=f(x)的图象.
(1)求函数y=g(x)的解析式;
(2)当0≤x<1时总有f(x)+g(x)≥m成立,求m的取值范围.
已知函数f(x)=sin(ωx+φ),其中manfen5.com 满分网
(1)若manfen5.com 满分网,求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于manfen5.com 满分网,求最小的正实数m,使得函数的图象向左平移m个单位后所对应的函数是偶函数.
已知抛物线C:y2=2px(p>0),焦点F到准线l的距离为2.
(1)求p的值;
(2)过点F作直线交抛物线于点A、B,交l于点M.若点M的纵坐标为-2,求|AB|.
已知双曲线manfen5.com 满分网(a,b为大于0的常数),过第一象限内双曲线上任意一点P作切线l,过原点作l的平行线交PF1于M,则|MP|=    (用a,b表示).
manfen5.com 满分网
已知数列{an}对于任意的p,q∈N*,有ap+q=ap•aq.若manfen5.com 满分网,则a18=   
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为45°,若manfen5.com 满分网,则实数λ的取值范围是   
已知F1、F2是椭圆manfen5.com 满分网的两个焦点,过F2的直线交椭圆于点A、B.若|AB|=5,则|AF1|+|BF1|的值为   
若函数f(x)=log2(4x-2),则f-1(1)=   
已知manfen5.com 满分网,设函数f(x)的最大值是M,最小值是N,则( )
A.M+N=8
B.M-N=8
C.M+N=6
D.M-N=6
设双曲线manfen5.com 满分网,过点C(0,1)且斜率为1的直线交双曲线的两渐近线于点A、B.若manfen5.com 满分网,则双曲线的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( )
A.m∥l,且l与圆相交
B.l⊥m,且l与圆相切
C.m∥l,且l与圆相离
D.l⊥m,且l与圆相离
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象在y轴右侧的第一个最高点为M(2,2),与x轴在原点右侧的第一个交点为N(5,0),则函数f(x)的解析式为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知直线l1:ax+y+a-1=0不经过第一象限,且l1⊥l2,则直线l2的倾斜角的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为e1、e2、e3、e4,其大小关系为( )
manfen5.com 满分网
A.e1<e2<e4<e3
B.e1<e2<e3<e4
C.e2<e1<e3<e4
D.e2<e1<e4<e3
设x,y∈R,则“xy>0”是“|x+y|=|x|+|y|”成立的( )
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既不充分又不必要条件
设全集U是实数集R,manfen5.com 满分网,则图中阴影部分所表示的集合是( )
manfen5.com 满分网
A.{x|-2≤x<1}
B.{x|-2≤x≤2}
C.{x|1<x≤2}
D.{x|x<2}
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.