下列说法正确的是    .(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
manfen5.com 满分网是函数解析式;
③若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
manfen5.com 满分网是非奇非偶函数;
⑤函数manfen5.com 满分网的单调增区间是(-∞,1).
对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数”.这个函数[x]叫做“取整函数”,则[lg1]+[lg2]+[lg3]+[lg4]+…+[lg2009]=   
若实数x,y满足方程组manfen5.com 满分网,则x+y=   
已知函数f(x)=2×9x-3x+a2-a-3,当0≤x≤1时,f(x)>0恒成立,则实数a的取值范围为   
已知最小正周期为2的函数y=f(x),当x∈[-1,1]时,f(x)=x2,则函数y=f(x)(x∈R)的图象与y=|log5x|的图象的交点个数为   
函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,且满足以下三个条件:①f(0)=0;②manfen5.com 满分网;③f(1-x)=1-f(x).则manfen5.com 满分网=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.1
D.manfen5.com 满分网
定义域为R的函数f(x)=manfen5.com 满分网(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x2+x4+x5)等于 ( )
A.0
B.21g2
C.31g2
D.1
设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是( )
A.{S}=1且{T}=0
B.{S}=1且{T}=1
C.{S}=2且{T}=2
D.{S}=2且{T}=3
对实数a与b,定义新运算“⊗”:manfen5.com 满分网设函数f(x)=(x2-2)⊗(x-x2),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知manfen5.com 满分网是(-∞,+∞)上的减函数,那么a的取值范围是( )
A.(0,1)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则( )
A.f(x1)+f(x2)+f(x3)>0
B.f(x1)+f(x2)+f(x3)<0
C.f(x1)+f(x2)+f(x3)=0
D.f(x1)+f(x2)>f(x3
已知manfen5.com 满分网,则( )
A.a>b>c
B.b>a>c
C.a>c>b
D.c>a>b
下图给出4个幂函数的图象,则图象与函数的大致对应是( )manfen5.com 满分网
A.①manfen5.com 满分网,②y=x2,③manfen5.com 满分网,④y=x-1
B.①y=x3,②y=x2,③manfen5.com 满分网,④y=x-1
C.①y=x2,②y=x3,③manfen5.com 满分网,④y=x-1
D.①manfen5.com 满分网,②manfen5.com 满分网,③y=x2,④y=x-1
设全集U=R,若集合M={y|y=manfen5.com 满分网},N={x|y=lgmanfen5.com 满分网},则(CUM)∩N=( )
A.(-3,2)
B.(-3,0)
C.(-∞,1)∪(4,+∞)
D.(-3,1)
下列各组函数,在同一直角坐标系中f(x)与g(x)相同的一组是( )
A.f(x)=manfen5.com 满分网,g(x)=manfen5.com 满分网
B.f(x)=manfen5.com 满分网,g(x)=x-3
C.f(x)=manfen5.com 满分网,g(x)=manfen5.com 满分网
D.f(x)=x,g(x)=lg(10x
已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)-t(t为常数)并且当x>0时,f(x)<t
(1)求证:f(x)是R上的减函数;
(2)若f(4)=-t-4,解关于m的不等式f(m2-m)+2>0.
manfen5.com 满分网(a,b为实常数).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是奇函数,求a与b的值;
(3)求(2)中函数f(x)的值域.
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.
已知:A={x|a≤x≤a+3},B={x|x<-1或x>5}
(1)若A∩B=∅,求实数a的取值范围.
(2)若A∪B=B,求实数a的取值范围.
已知函数f(x)为奇函数,且f(2+x)=f(2-x),当-2≤x<0时,f(x)=2x,则f(2+log23)=   
已知函数f(x)满足对任意的x∈R都有manfen5.com 满分网成立,则manfen5.com 满分网=   
幂函数f(x)的图象过点manfen5.com 满分网,则f(x)的解析式是   
函数y=manfen5.com 满分网的定义域是   
已知函数f(x)=manfen5.com 满分网,则不等式x+(x+1)f(x+1)≤1的解集是( )
A.manfen5.com 满分网
B.(-∞,1]
C.manfen5.com 满分网
D.manfen5.com 满分网
如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
a,b,c,d四个物体沿同一方向同时开始运动,假设其经过的路程和时间x的函数关系分别是f1(x)=x2manfen5.com 满分网,f3(x)=log2x,f4(x)=2x,如果运动的时间足够长,则运动在最前面的物体一定是( )
A.a
B.b
C.c
D.d
如果函数f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数,那么实数a取值范围是( )
A.a≤-3
B.a≥-3
C.a≤5
D.a≥5
三个数a=0.32,b=log20.3,c=20.3之间的大小关系是( )
A.a<c<b
B.a<b<c
C.b<a<c
D.b<c<a
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.