“p或q是假命题”是“非p为真命题”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
已知集合M={x|logx2<1},N={x|x<1},则M∩N=( )
A.{x|0<x<1}
B.{x|0<x<2}
C.{x|x<1}
D.∅
已知函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数,a+b的值是( )
A.0
B.manfen5.com 满分网
C.1
D.-1
集合A={x|(x+1)(x-2)<0},B={x|(x+2)(x-a)≤0},若A∩B=A,则a的取值范围是( )
A.a<-1
B.a>2
C.a≥2
D.-1<a<2
复数z1=3+i,z2=1-i则复数manfen5.com 满分网在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
已知集合A={x|-2<x<2},B={x|x2-2x≤0},则A∩B等于( )
A.(0,2)
B.(0,2]
C.[0,2)
D.[0,2]
已知在数列{an}中,an≠0,(n∈N*).求证:“{an}是常数列”的充要条件是“{an}既是等差数列又是等比数列”.
设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是   
已知集合A=manfen5.com 满分网
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.
已知矩形周长为20,矩形绕它的一条边旋转形成一个圆柱.问矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?
manfen5.com 满分网
判断下列命题的真假,并写出这些命题的否定.
(1)存在一个四边形,它的对角线互相垂直.
(2)∀x∈N,x3>x2
x,y满足条件:manfen5.com 满分网,则函数z=2x+y的值域是   
在△ABC中,“A<B”是“SinA<SinB”的______条件.
函数y=x+manfen5.com 满分网(x≠0)的值域是   
命题:∀x∈R,sinx≥1.则该命题的否定是   
条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.即不充分也不必要条件
“a和b都不是偶数”的否定形式是( )
A.a和b至少有一个是偶数
B.a和b至多有一个是偶数
C.a是偶数,b不是偶数
D.a和b都是偶数
2x2-5x-3<0的一个必要不充分条件是( )
A.-manfen5.com 满分网<x<3
B.-manfen5.com 满分网<x<0
C.-3<x<manfen5.com 满分网
D.-1<x<6
“至多有三个”的否定为( )
A.至少有三个
B.至少有四个
C.有三个
D.有四个
若命题“p∨q”为真,“¬p”为真,则( )
A.p真q真
B.p假q假
C.p真q假
D.p假q真
若关于x的不等式x2-4x≥m对x∈(0,1]恒成立,则( )
A.m≥-3
B.m≤-3
C.-3≤m<0
D.m≥-4
若0<a<1,则关于x的不等式manfen5.com 满分网的解集是( )
A.{x|x<-10或x>9}
B.{x|x<-9或x>10}
C.{x|-10<x<9}
D.{x|-9<x<10}
设b>a>0,且a+b=1,则此四个数manfen5.com 满分网,2ab,a2+b2,b中最大的是( )
A.b
B.a2+b2
C.2ab
D.manfen5.com 满分网
若x>0,y>0,且x+y=1则manfen5.com 满分网的最小值为( )
A.2
B.manfen5.com 满分网
C.4
D.manfen5.com 满分网
设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则有( )
A.a=3,b=-4
B.a=3,b=4
C.a=-3,b=4
D.a=-3,b=-4
有下述说法:
①a>b>0是a2>b2的充要条件.
②a>b>0是manfen5.com 满分网的充要条件.
③a>b>0是a3>b3的充要条件.则其中正确的说法有( )
A.0个
B.1个
C.2个
D.3个
已知a<b则下列关系式正确的是( )
A.a2<b2
B.a2>b2
C.2a<2b
D.lna<lnb
设函数manfen5.com 满分网x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
椭圆C:manfen5.com 满分网的右焦点F2(1,0),离心率为manfen5.com 满分网,已知点M坐标是(0,3),点P是椭圆C上的动点.
(1)求椭圆C的方程;
(2)求|PM|+|PF2|的最大值及此时的P点坐标.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.