计算:lg20-lg2=( )
A.4
B.2
C.l
D.manfen5.com 满分网
已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程manfen5.com 满分网的根的个数.
manfen5.com 满分网如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设ÐMGA=a(manfen5.com 满分网
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数.
(2)求y=manfen5.com 满分网的最大值与最小值.
已知函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若直线l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间(a∈R).
在△ABC中,若向量manfen5.com 满分网=manfen5.com 满分网,4),其中角A,B,C的对边分别是a,b,c,当manfen5.com 满分网时.
(1)求角A的值;
(2)当manfen5.com 满分网时,求边长b和角B的大小.
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的单调递增区间;
(3)当manfen5.com 满分网时,求函数h(x)的最大值与最小值.
已知函数f(x)=sin(ωx+ϕ)(0<ω<1,0≤ϕ≤π)是R上的偶函数,其图象关于点Mmanfen5.com 满分网对称,求f(x)的解析式.
已知manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求manfen5.com 满分网的值.
在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过一分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为   
在△ABC中,D为BC边上一点,BC=3BD,AD=manfen5.com 满分网,∠ADB=135°.若AC=manfen5.com 满分网AB,则BD=   
在锐角△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网+manfen5.com 满分网=6cosC,则manfen5.com 满分网+manfen5.com 满分网的值是   
已知manfen5.com 满分网,则manfen5.com 满分网的值为   
函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若△ABC的周长等于20,面积是10manfen5.com 满分网,A=60°,则BC边的长是( )
A.5
B.6
C.7
D.8
在△ABC中,角A,B,C的对边分别是a,b,c,若2b=a+c,则角B的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
在△ABC中,cos2manfen5.com 满分网=manfen5.com 满分网,(a,b,c分别为角A,B,C的对边),则△ABC的形状为( )
A.正三角形
B.直角三角形
C.等腰三角形或直角三角形
D.等腰直角三角形
已知函数manfen5.com 满分网,则f(2+log23)的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设a=20.3,b=0.32,c=logx(x2+0.3)(x>1),则a,b,c的大小关系是( )
A.a<b<c
B.b<a<c
C.c<b<a
D.b<c<a
定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,manfen5.com 满分网]时,f(x)=sinx,则f(manfen5.com 满分网)的值为( )
A.-manfen5.com 满分网
B.manfen5.com 满分网
C.-manfen5.com 满分网
D.manfen5.com 满分网
设函数manfen5.com 满分网(其中0<ω<2),若函数f(x)图象的一条对称轴为x=manfen5.com 满分网,那么ω=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
将函数f(x)=sin2x+cos2x的图象沿x轴向右平移manfen5.com 满分网个单位,所得函数的解析式为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
manfen5.com 满分网,则tanα•tanβ=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设sin(manfen5.com 满分网+θ)=manfen5.com 满分网,则sin2θ=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知钝角α的终边经过点P(sin2θ,sin4θ),且manfen5.com 满分网,则α的正切值是( )
A.manfen5.com 满分网
B.-1
C.manfen5.com 满分网
D.2
manfen5.com 满分网如图,在圆锥PO中,已知PO=manfen5.com 满分网,⊙O的直径AB=2,C是manfen5.com 满分网的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.
在直角坐标系xOy中,以O为圆心的圆与直线:x-manfen5.com 满分网y=4相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求manfen5.com 满分网的取值范围.
有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径1.511.491.491.511.491.511.471.461.531.47
其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
已知函数y=manfen5.com 满分网,输入自变量的值,输出对应的函数值.
(1)画出算法框图.(2)写出程序语句.
manfen5.com 满分网如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:
(1)[79.5,89.5)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格).
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.