| 
			        
		                 
 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. 
 (1) 求证:△ADF∽△DEC (2)
若AB=4,AD=3 
 中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛. (1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示); (2)求首场比赛出场的两个队都是部队文工团的概率P. 
 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 
 已知x1=-1是方程 
 如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π) 
 
 已知:正比例函数y=k1x的图象与反比例函数 
 若△OMN的面积等于2,求这两个函数的解析式. 
 2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的亚运五项球比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图,请你根据这两位同学提供的信息,解答下面的问题: (1)将统计补充完整; (2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数. 
 如图,在梯形ABCD中,AB∥CD (1)用尺规作图方法,作∠DAB的角平分线AF(只保留作图痕迹,不写作法和证明) (2)若AF交CD边于点E,判断△ADE的形状(只写结果) 
 计算: 
 我们常用的数是十进制数,计算机程序使用的是二进制数 (只有数码0和1),它们两者之间可以互相换算,如将(101)2, (1011)2换算成十进制数应为: 
 
 按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 
 如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm, 
 则点P到BC的距离是_____cm. 
 一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示). 
 如果小青的峰高为1.65米,由此可推断出树高是_______米. 
 方程组  
 分解因式 
 如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°, 
 那么∠AOB等于( ) A.60° B.90° C.120° D.150° 
 现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2, 
 A. B C D 则旋转的牌是( ) 
 在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是( ) A.(-2,6) B.(-2,0) C.(-5,3) D.(1,3) 
 某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为( ) A.12 B.13 C.14 D.15 
 .-5的相反数是( )    A.5          B.-5        C. 
 (本题满分12分)已知抛物线 
 (1)求b、c的值并写出抛物线的对称轴; (2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E. 求证:四边形ODBE是等腰梯形; (3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的 
 (本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元. (1)求甲、乙两种花木每株成本分别为多少元? (2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案? 
 (本题满分10分)如图,AB是⊙O的直径, P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连结CD交AB于点E. 
 求证:(1)PD=PE; (2) 
 (本题满分10分)如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA= OB= 
 (1)写出A、B两点的坐标; (2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π). 
 为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题: 
 (1)此次共调查了多少名同学? (2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数; (3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师? 
 (本题满分10分) 如图,已知一次函数 
 (1)求A、B两点的坐标; (2)观察图象,可知一次函数值小于反比例函数值的 
 (本题满分8分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率. 
 (本题满分8分)如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF. 
 求证:∠EBF=∠FDE. 
 (本题满分8分) 解方程: 
 (本题满分8分) 计算: 
 数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形. 
 这样的三角形最多能画 ▲ 个. 
  |