已知函数f(x)=ax2+1(a>0),g(x)=x3+bx. (1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值; (2)当a=3,b=-9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围. |
|
近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);
(2)试估计生活垃圾投放错误的概率; (3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值. (求:S2= ![]() ![]() ![]() ![]() ![]() |
|||||||||||||||||
如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2. (1)求证:DE∥平面A1CB; (2)求证:A1F⊥BE; (3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由. ![]() |
|
已知函数f(x)=![]() (1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递减区间. |
|
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若∀x∈R,f(x)<0或g(x)<0,则m的取值范围是 . | |
己知正方形ABCD的边长为1,点E是AB边上的动点.则![]() |
|
已知函数f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)= . | |
在△ABC中,若a=3,b=![]() ![]() |
|
已知{an}为等差数列,Sn为其前n项和,若a1=![]() |
|
直线y=x被圆x2+(y-2)2=4截得的弦长为 . | |