2的倒数是( ) A. ![]() B.- ![]() C.2 D.-2 |
|
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1. (1)求P点坐标及a的值; (2)如图(1),将抛物线C1绕点B旋转180°后得到抛物线C2,求C2的解析式; (3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C3.抛物线C3的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标? ![]() |
|
问题背景: 在△ABC中,AB、BC、AC三边的长分别为 ![]() ![]() ![]() 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积. (1)请你将△ABC的面积直接填写在横线上______; 思维拓展: (2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为 ![]() ![]() ![]() 探索创新: (3)若△ABC三边的长分别为 ![]() ![]() ![]() ![]() |
|
今有总长30米的篱笆,用它围一矩形鸡场,如图,一边靠墙PQ,东侧和南侧各有一门,门宽CD=FG=1米,则当AB为多少米时,矩形鸡场ABEH的面积最大?最大面积是多少?![]() |
|
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=![]() (1)求反比例函数的解析式及E点的坐标; (2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由. (3)若AD与BO的交点为Q,请判断点Q是否在此反比例函数的图象上,并说明理由. ![]() |
|
如图,在12×6的网格中(每个小正方形的边长均为1个单位长),有一个Rt△ABC和一个半圆O(A、B、C、O均为格点),∠C=90°,半圆O的半径为2.将Rt△ABC沿AC方向向右平移m个单位,使其斜边恰好与半圆O相切,求m的值.![]() |
|
某小区为解决小区居民停车难问题,在小区道路旁画停车位,按要求宽度不能超过3.5米,如图,矩形ABCD是供一辆机动车停放的车位设计示意图,请你参考图中数据,计算车位所占道路的宽度EF是否符合设计要求. 参考数据:(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84) ![]() |
|
如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F. (1)证明:△BDF≌△DCE; (2)请你给△ABC增加一个条件,______使四边形AFDE成为菱形(不添加其他辅助线,写出一个即可,不必证明) ![]() |
|
计算:![]() |
|
如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B点的坐标是 .![]() |
|