下列计算正确的是( ) A.(a2)3=a5 B.a5+a5=2a5 C.a2•a3=a6 D.(ab)2=ab2 |
|
在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( ) A. ![]() B. ![]() C. ![]() D. ![]() |
|
生物学家发现一种病毒和长度约为0.000 043mm,用科学记数法表示这个数的结果为( ) A.4.3×10-4 B.4.3×10-5 C.4.3×10-6 D.43×10-5 |
|
如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位). (1)用含t的代数式表示点P的坐标; (2)分别求当t=1,t=5时,线段PQ的长; (3)求S与t之间的函数关系式; (4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围. ![]() |
|
如图(1)所示一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这纸片剪成△AB1D1和△CB2D2两个三角形如图(2),将△AB1D1沿直线AB1方向平移在平移过程中,(点B2始终在AB1上,AB1与CD2始终保持平行)当点A与B2重合时停止平移在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F.![]() (1)当△AB1D1平移到图3时,试判断四边形B2FD1E是什么四边形并说明理由; (2)设平移距离B2B1=x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求四边形B2FD1E的面积的最大值. |
|
苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息: ①每亩水面的年租金为500元,水面需按整数亩出租; ②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗; ③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益; ④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益; (1)若租用水面n亩,则年租金共需______元; (2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润:收益-成本); (3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款.用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元? |
|
如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点. (1)求证:AE⊥DE; (2)计算:AC•AF的值. ![]() |
|
如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m. (1)求∠CAE的度数; (2)求这棵大树折断前的高度.(结果精确到个位,参考数据: ![]() ![]() ![]() ![]() |
|
已知抛物线y1=x2-2x+c的部分图象如图1所示. (1)求c的取值范围; (2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式; (3)若反比例函数 ![]() ![]() |
|
某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的![]() |
|