如下图,在⊙O中,点P在直径AB上运动,但与A、B两点不重合,过点P作弦CE⊥AB,在![]() (1)如图1,当点P运动到与O点重合时,求∠FDM的度数. (2)如图2、图3,当点P运动到与O点不重合时,求证:FM•OB=DF•MC. ![]() |
|
![]() ![]() (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式; (3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由. |
|
![]() (1)求证:∠AED=∠ADC,∠DEC=∠B; (2)求证:AB2=AE•AC. |
|
如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P. (1)当点E坐标为(3,0)时,试证明CE=EP; (2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由; (3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由. ![]() |
|
如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB. (1)求证:△ADF∽△CAE; (2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积? ![]() |
|
设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且![]() (1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”; (2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明. ![]() |
|
问题背景 (1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空: 四边形DBFE的面积S=______,△EFC的面积S1=______,△ADE的面积S2=______. 探究发现 (2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2. 拓展迁移 (3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积. ![]() |
|
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). (1)当t=0.5时,求线段QM的长; (2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值; (3)当t>2时,连接PQ交线段AC于点R.请探究 ![]() ![]() |
|
如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F. (1)求证:△CEB≌△ADC; (2)若AD=9cm,DE=6cm,求BE及EF的长. ![]() |
|
如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H. (1)求证:△BAE∽△BCF; (2)若BG=BH,求证:四边形ABCD是菱形. ![]() |
|