相关试题
当前位置:首页 > 初中数学试题
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.manfen5.com 满分网manfen5.com 满分网
如图,已知反比例函数y=manfen5.com 满分网的图象经过点A(1,-3),一次函数y=kx+b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.
(1)试确定这两个函数的表达式;
(2)求点B的坐标.

manfen5.com 满分网
如图,已知反比例函数y=manfen5.com 满分网(x>0)的图象与一次函数y=-manfen5.com 满分网x+manfen5.com 满分网的图象交于A、B两点,点C的坐标为(1,manfen5.com 满分网),连接AC,AC平行于y轴.
(1)求反比例函数的解析式及点B的坐标;
(2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上的A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CAB总相似,简要说明判断理由.manfen5.com 满分网
如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网
已知正比例函数y=k1x(k1≠0)与反比例函数y=manfen5.com 满分网(k2≠0)的图象交于A、B两点,点A的坐标为(2,1)
(1)求正比例函数、反比例函数的表达式;
(2)求点B的坐标.
如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=manfen5.com 满分网的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

manfen5.com 满分网
如图,点P是双曲线manfen5.com 满分网(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=manfen5.com 满分网(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.
manfen5.com 满分网
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求manfen5.com 满分网的值.

manfen5.com 满分网
如图,在直角坐标平面内,函数manfen5.com 满分网(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网
附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网
共1196510条记录 当前(71932/119651) 首页 上一页 71927 71928 71929 71930 71931 71932 71933 71934 71935 71936 71937 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.