如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A. 主视图 B. 俯视图 C. 左视图 D. 一样大
|
|
若a< A. 2 B. 3 C. 4 D. 5
|
|
如图1,在平面直角坐标系xOy中,直线l:
(1)求n的值和抛物线的解析式; (2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值; (3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
|
|
如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上. (1)如图1,当点E在边BC上时,求证DE=EB; (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明; (3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
|
|
A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系. (1)L1表示哪辆汽车到甲地的距离与行驶时间的关系? (2)汽车B的速度是多少? (3)求L1,L2分别表示的两辆汽车的s与t的关系式. (4)2小时后,两车相距多少千米? (5)行驶多长时间后,A、B两车相遇?
|
|
(本题8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F. (1)求证:DF⊥AC; (2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
|
|
如图是某校甲班学生外出去基地参观,乘车、行步、骑车的人数分布直方图和扇形统计图. (1)根据统计图求甲班步行的人数; (2)甲班步行的对象根据步行人数通过全班随机抽号来确定;乙班学生去基地分两段路走,即学校﹣﹣A地﹣﹣基地,每段路走法有乘车或步行或骑车,你认为哪个班的学生有步行的可能性少?(利用列表法或树状图求概率说明).
|
|
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′, (1)请你画出△A′B′C′和△A″B″C′(不要求写画法). (2)求出线段A′C′在旋转过程中所扫过的面积.(结果保留)
|
|
计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣
|
|
在正方形ABCD中,点E是AD的中点,连接BE,BF平分∠EBC交CD于点F,交AC于点G,将△CGF沿直线GF折叠至△C′GF,BD与△C′GF相交于点M、N,连接CN,若AB=6,则四边形CNC′G的面积是_____.
|
|