(2010•丹东)五名同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是( ) A.10 B.9 C.8 D.6 |
|
(2003•重庆)下列各组数中,互为相反数的是( ) A.2与 ![]() B.(-1)2与1 C.-1与(-1)2 D.2与|-2| |
|
(2010•铁岭)如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2). (1)求过A、B、C三点的抛物线解析式; (2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S; ①求S与t的函数关系式; ②当t是多少时,△PBF的面积最大,最大面积是多少? (3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由. ![]() |
|
(2010•铁岭)如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点. (1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由. (2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形? (3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明. ![]() |
|
(2010•铁岭)小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小李到达甲地后,再经过______小时小张到达乙地;小张骑自行车的速度是______千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案) ![]() |
|
![]() (1)求点O到线段ND的距离; (2)过点A作BN的平行线EF,判断直线EF与⊙O的位置关系并说明理由. |
|
(2010•铁岭)某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票. |
|
(2012•自贡)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:![]() ![]() |
|
(2010•铁岭)红星中学开展了“绿化家乡,植树造林”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图1和图2两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题: ![]() (1)这四个班共种______棵树; (2)请你补全两幅统计图; (3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵? |
|
(2010•铁岭)如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字. (1)只转动A转盘,指针所指的数字是2的概率是多少? (2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止). ![]() |
|