如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
(2009•安徽)(-3)2的值是( ) A.9 B.-9 C.6 D.-6 |
|
(2009•兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒. (1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标; (3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. ![]() |
|
(2009•安徽)已知某种水果的批发单价与批发量的函数关系如图1所示. (1)请说明图中①、②两段函数图象的实际意义; (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果; (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大. ![]() |
|
已知关于x的二次函数y=x2+2x+1-m2(m为常数且m<0). (1)求证:此抛物线与x轴总有两个交点; (2)设抛物线与x轴两个交点横坐标为x1,x2且有x12-x22=2,求m的值. |
|
(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径. (1)求证:AE与⊙O相切; (2)当BC=4,cosC= ![]() ![]() |
|
(2009•南宁)为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
(1)表中m和n所表示的数分别为:m=______,n=______; (2)请在图中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段; (4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少? ![]() |
||||||||||||||||
(2010•锦州)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度. (1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标; (2)若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标; (3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由. ![]() |
|
①计算-2-2-![]() ![]() ②先化简,后求值(1+ ![]() ![]() ![]() |
|
(2009•成都)已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3三个数中任取的一个数,b是从1,2,3,4四个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤7,n为整数),则当Qn的概率最大时,n的所有可能的值为 . | |