(2010•肇庆)如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F. (1)求证:△CEB≌△ADC; (2)若AD=9cm,DE=6cm,求BE及EF的长. ![]() |
|
(2010•自贡)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H. (1)求证:△BAE∽△BCF; (2)若BG=BH,求证:四边形ABCD是菱形. ![]() |
|
(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上. (1)求证:△ABD∽△CAE; (2)如果AC=BD,AD=2 ![]() ![]() |
|
(2010•淮安)如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C坐标是______,当点D运动8.5秒时所在位置的坐标是______; (2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似?(只考虑以点A、O为对应顶点的情况) ![]() |
|
(2010•茂名)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E. (1)证明:△OAB∽△EDA; (2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离. ![]() |
|
(2010•眉山)如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F. (1)证明:△ACE∽△FBE; (2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由. ![]() |
|
(2010•宁夏)已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M. (1)求证:△ABF≌△DAE; (2)找出图中与△ABM相似的所有三角形(不添加任何辅助线). ![]() |
|
(2010•威海)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.![]() ﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC. ﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F,试判断∠A1C1C与∠A1BC是否相等,并说明理由. ﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形. ![]() |
|
(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1. (1)若c=a1,求证:a=kc; (2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明; (3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由. ![]() |
|
(2010•大连)如图1,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=kEA,探索线段EF与EG的数量关系,并证明你的结论. 说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分. (1)m=1(如图2) (2)m=1,k=1(如图3) ![]() |
|