(2005•宁德)如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边). (1)请直接写出AB、AC的长; (2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米). ![]() |
|
(2005•嘉兴)某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题. (1)写出判定扇形相似的一种方法:若______,则两个扇形相似; (2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为______; (3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径. ![]() |
|
(2005•安徽)如图的花环状图案中,ABCDEF和A1B1C1D1E1F1都是正六边形. (1)求证:∠1=∠2; (2)找出一对全等的三角形并给予证明. ![]() |
|
(2005•兰州)如图,已知正三角形的边长2a (1)求它的内切圆与外接圆组成的圆环的面积; (2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积? (3)将条件中的“正三角形”改为“正方形”、“正六边形”你能得出怎样的结论; (4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环的面积. ![]() |
|
(2005•黄石)已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.![]() (1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF; (2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE; (3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断. |
|
(2007•开封)已知:⊙O1与⊙O2相交于点A、B,过点B作CD⊥AB,分别交⊙O1和⊙O2于点C、D. (1)如图,求证:AC是⊙O1的直径; (2)若AC=AD, ①如图,连接BO2、O1O2,求证:四边形O1C BO2是平行四边形; ②若点O1在⊙O2外,延长O2O1交⊙O1于点M,在劣弧 ![]() ![]() ![]() |
|
(2005•常德)如图,⊙O1与⊙O2外切于点P,外公切线AB切⊙O1于点A,切⊙O2于点B, (1)求证:AP⊥BP; (2)若⊙O1与⊙O2的半径分别为r和R,求证: ![]() (3)延长AP交⊙O2于C,连接BC,若r:R=2:3,求tan∠C的值. ![]() |
|
(2005•枣庄)如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以线段AB为直径的圆与直线O1O2的位置关系,并说明理由.![]() |
|
(2005•兰州)如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.![]() |
|
(2005•武汉)如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D. (1)求证:PC平分∠BPD; (2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论. ![]() |
|