如果椭圆
![]() A.x-2y=0 B.x+2y-4=0 C.2x+3y-12=0 D.x+2y-8=0 过双曲线
![]() ![]() A. ![]() B. ![]() C.2 D. ![]() 已知△ABC的周长为20,且顶点B (0,-4),C (0,4),则顶点A的轨迹方程是( )
A. ![]() B. ![]() C. ![]() D. ![]() 观察下列数列的特点:1,2,2,3,3,3,4,4,4,4,…,其中第100项是( )
A.10 B.13 C.14 D.100 物体的运动方程
![]() A.0 B.1 C.2 D.3 函数f(x)=xlnx在点(1,f(1))处的切线方程是( )
A.y=2x-1 B.y=2 C.y= D.y=x-1 已知1-i是方程x2+ax+2=0的一个根,则实数a的值为( )
A.2 B.-2 C.4 D.-4 已知函数f(x)=ax2+bx+c(a>b>c),满足f(1)=0,且a2+[f(m1)+f(m2)]•a+f(m1)•f(m2)=0.
(1)求证a>0,c<0且b≥0; (2)求证f(x)的图象被x轴所截得的线段长的取值范围是[2,3);问能否得出f(m1+3),f(m2+3)中至少有一个为正数,请证明你的结论. 已知命题p:f(x)=x2-4mx+4m2+2在区间[-1,3]上的最小值等于2;命题q:不等式|x|+|x-1|≥m对任意x∈R恒成立.如果上述两个命题中有且仅有一个是真命题,求实数m的取值范围.
设命题p:|4x-3|≤1和命题q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件.
(1)p是q的什么条件? (2)求实数a的取值范围. 记关于x的不等式
![]() (1)若a=2,求集合P,Q和P∩Q; (2)若P∪Q=Q,求a的取值范围. 已知函数
![]() (1)求k的值; (2)判断并证明函数f(x)在(1,+∞)上的单调性. 分别解下列不等式,写出不等式的解集.
(1)|1-3x|<2; (2)x2+5x-14>0. 下列判断:
①x2≠y2⇔x≠y或x≠-y; ②若x2+y2=0,则x,y全为零; ③命题“ф⊆{1,2}或-1∈N”是真命题; ④“am2<bm2”是“a<b”的充要条件; ⑤若b≤-1,则方程x2-2bx+b2+b=0有实根. 其中正确的是 (填写番号). 函数
![]() 某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .
若集合{x|x2-5x+p≥0}={x|x≤-1或x≥6},则p= .
已知函数
![]() 函数y=f(x)是定义在R上的增函数,y=f(x)的图象经过点(0,-1)和下面下面的哪一个点时,能使不等式-1<f(x+1)<1的解集为{x|-1<x<3}( )
A.(4,0) B.(4,1) C.(3,1) D.(3,2) 集合{(x,y)|x+y-2=0,且x-2y+4=0}⊆{(x,y)|y=3x+b},则b=( )
A.1 B.-1 C.2 D.-2 若集合P={x|0≤x≤4},Q={y|0≤y≤2},则下列对应法则中不能从P到Q建立映射的是( )
A.y= ![]() B. ![]() C. ![]() D. ![]() 设a,b都是非零实数,
![]() A.{3} B.{3,2,1} C.{3,1,-1} D.{3,-1} 函数
![]() A.[-4,1] B.[-4,0) C.(0,1] D.[-4,0)∪(0,1] 函数y=3x2+2(a-1)x+b在区间(-∞,1)上是减函数,那么( )
A.a∈(-∞,-1) B.a=2 C.a≤-2 D.a≥2 与不等式
![]() A.(x-3)(2-x)≥0 B.0<x-2≤1 C. ![]() D.(x-3)(2-x)≤0 “a>0”是“|a|>0”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” 已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则Cu( M∪N)=( )
A.{5,7} B.{2,4} C.{2,4,8} D.{1,2,3,4,6,7} ![]() ![]() (1)求证C1D⊥平面A1B; (2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论. ![]() ![]() (1)求D D1与平面ABD1所成角的大小; (2)求面B D1C与面A D1D所成二面角的大小; (3)求AD的中点M到平面D1B C的距离. |