函数y=xex的最小值是( ) A.-1 B.-e C.-
过椭圆 A.
已知函数 A.
由曲线 A. 6 B. 4 C.
设有下面四个命题
其中的真命题为 A. C.
设 A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2
凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n+1)为( ) A.f(n)+n+1 B.f(n)+n C.f(n)+n-1 D.f(n)+n-2
已知 A.
已知函数 (Ⅰ)求函数 (Ⅱ)设曲线
已知函数 (1)若 (2)若
已知函数 (Ⅰ)求实数 (Ⅱ)当
已知函数 (Ⅰ)求 (Ⅱ)若函数
已知 (1)求角 (2)若
已知定义在
已知
已知函数
计算
已知函数 A.
已知函数 A.函数 B.函数 C.函数 D.把函数
若函数 A.
已知函数 A.
为得到函数 A.横坐标缩短到原来的 B.横坐标伸长到原来的 C.横坐标缩短到原来的 D.横坐标伸长到原来的
已知命题 A.
“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A.乙丑年 B.丙寅年 C.丁卯年 D.戊辰年
函数 A.
“ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
已知集合 A.
已知函数
在平面直角坐标系 (Ⅰ)求曲线 (Ⅱ)已知点
为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致戏察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为(肩手左右)的游戏,方案如下: 游戏准备: 选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的”左“字,另一张纸板正反两面打印有相同的“右”字. 游戏进行: 一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次. 游戏评价: 为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得﹣1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得﹣1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X. (1)求X的分布列; (2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,pi(i=0,1,…,8)表示“甲小朋友的当前累计得分为i时,本轮游戏甲小朋友最终获胜”的概率,则P0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8. ①证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列; ②求p4,并根据p4的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.8”的假设.
|