|
﹣5的相反数是( ) A、﹣5 B、5 C、﹣
(2011•滨州)若点A(m,﹣2)在反比例函数
(2011•滨州)将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是 .
(2011•滨州)在等腰△ABC中,∠C=90°,则tanA= .
(2011•滨州)边长为6cm的等边三角形中,其一边上高的长度为 .
(2011•滨州)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为 .
(2008•贵阳)分解因式:x2﹣4= .
(2011•滨州)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )
A、1 B、2 C、3 D、4
(2011•滨州)如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A'B'C的位置,且A、C、B'三点在同一条直线上,则点A所经过的最短路线的长为( )
A、 C、
(2011•滨州)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A、1,2 B、1,3 C、4,2 D、4,3
(2011•滨州)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精确到0.1)( ) A、9.1 B、9.5 C、3.1 D、3.5
(2011•滨州)如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为( )
A、(﹣4,5) B、(﹣5,4) C、(5,﹣4) D、(4,﹣5)
(2011•滨州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( ) A、先向左平移2个单位,再向上平移3个单位 B、先向左平移2个单位,再向下平移3个单位 C、先向右平移2个单位,再向下平移3个单位 D、先向右平移2个单位,再向上平移3个单位
(2011•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是( ) A、 C、
(2011•滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( ) A、1 B、5 C、7 D、9
(2011•滨州)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A、 C、
(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( ) A、289(1﹣x)2=256 B、256(1﹣x)2=289 C、289(1﹣2x)2=256 D、256(1﹣2x)2=289
二次根式 A、x≥ C、x≥﹣
(2011•滨州)在实数π、 A、1 B、2 C、3 D、4
(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。 (1)求∠OAB的大小; (2)当M、N重合时,求l的解析式; (3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由; (4)求S与b的函数关系式。
(本题满分10分)已知AB为⊙O直径,以OA为直径作⊙M。过B作⊙M得切线BC,切点为C,交⊙O于E。 (1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明); (2)证明:∠EAC=∠OCB; (3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值。
(本题满分8分)我市某县政府为了迎接“八一”建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆) (1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来。 (2)如果搭配及摆放一个A造型需要的人力是8人次,搭配及摆放一个B造型需要的人力是11次,哪种方案使用人力的总人次数最少,请说明理由。
(本题满分8分)直线y=―x―2与反比例函数y= (1)求反比例函数的解析式 (2)把直线AB绕着点M(―1,―1)顺时针旋转到MN,使直线MN⊥x轴,且与反比例函数的图像交于点N,求旋转角大小及线段MN的长。
(本题满分8分)已知矩形ABCD的对角线相交于点O,M 、N分别是OD、OC上异于O、C、D的点。 (1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是 。 (2)添加条件后,请证明四边形ABNM是等腰梯形。
(本题满分8分)为庆祝中国共产党建党90周年,6月中旬我市某展览馆进行党史展览,把免费参观票分到学校。展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进)。小张同学凭票进入展览大厅,参观结束后离开。 (1)小张从进入到离开共有多少种可能的进出方式?(要求用列表或树状图) (2)小张不从同一个验票口进出的概率是多少?
(本题满分6分)已知a=
如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向响点B匀速运动,若y=AE²-EF²,则y与动点F的运动时间x(0≤x≤6 )秒的函数关系式为 .
我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩。若扇形的半径为2cm,则C等级所在的扇形的面积是
分式方程
如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形
|