下列运算正确的是( )
A.3a+2a=a5
B.a2•a3=a6
C.(a+b)(a-b)=a2-b2
D.(a+b)2=a2+b2
|-2012|的相反数的倒数是( )
A.2012
B.-2012
C.manfen5.com 满分网
D.manfen5.com 满分网
manfen5.com 满分网如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.
(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=manfen5.com 满分网,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.
manfen5.com 满分网
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
manfen5.com 满分网如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=1,AC=manfen5.com 满分网,求⊙O的半径长.
如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为manfen5.com 满分网(即tan∠PCD=manfen5.com 满分网).
(1)求该建筑物的高度(即AB的长).
(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)
manfen5.com 满分网
小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?
(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?
manfen5.com 满分网
manfen5.com 满分网如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.
(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.
manfen5.com 满分网在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)
(1)画出△ABC向下平移3个单位后的△A1B1C1
(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.
先化简,再求值:manfen5.com 满分网,其中x=3.
manfen5.com 满分网按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和Sn=   
manfen5.com 满分网已知双曲线manfen5.com 满分网manfen5.com 满分网的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=   
一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是    cm2
manfen5.com 满分网二次函数y=-x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第    象限.
manfen5.com 满分网如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=   
甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则三人中射击成绩最稳定的是   
manfen5.com 满分网=   
函数manfen5.com 满分网中,自变量x的取值范围是   
如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到( )
manfen5.com 满分网
A.点C处
B.点D处
C.点B处
D.点A处
炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
不等式组manfen5.com 满分网的解集在数轴上表示正确的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( )
A.50元,20元
B.50元,40元
C.50元,50元
D.55元,50元
下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
如图,下列水平放置的几何体中,主视图是三角形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为( )
A.5.475×1011
B.5.475×1010
C.0.5475×1011
D.5475×108
-5的绝对值是( )
A.-5
B.±5
C.manfen5.com 满分网
D.5
如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
manfen5.com 满分网
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)试探究,四边形BECF是什么特殊的四边形?
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)

manfen5.com 满分网
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.