某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为    元.
圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为   
地球的赤道半径约为6 370 000米,用科学记数法记为    米.
在函数y=manfen5.com 满分网中,自变量x的取值范围是   
计算:sin260°+cos60°-tan45°=   
已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是( )
A.当AC=BD时,四边形ABCD是矩形
B.当AB=AD,CB=CD时,四边形ABCD是菱形
C.当AB=AD=BC时,四边形ABCD是菱形
D.当AC=BD,AD=AB时,四边形ABCD是正方形
正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
manfen5.com 满分网图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知函数y=x2+2x-3,当x=m时,y<0,则m的值可能是( )
A.-4
B.0
C.2
D.3
已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若不等式组manfen5.com 满分网的解集为0<x<1,则a的值为( )
A.1
B.2
C.3
D.4
对于函数y=-3x+1,下列结论正确的是( )
A.它的图象必经过点(-1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是( )
A.2
B.5
C.9
D.10
若实数a满足a-|a|=2a,则( )
A.a>0
B.a<0
C.a≥0
D.a≤0
下列运算结果正确的是( )
A.manfen5.com 满分网
B.a2•a3=a6
C.a2•a3=a5
D.a2+a3=a6
如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求直线AB的解析式;
(2)当点P运动到点(manfen5.com 满分网,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于manfen5.com 满分网?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
manfen5.com 满分网
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
如图在平面直角坐标系xOy中,函数y=manfen5.com 满分网(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.

manfen5.com 满分网
manfen5.com 满分网如图所示,在天水至宝鸡(天宝)高速公路建设中需要确定某条隧道AB的长度,已知在离地面2700米高度C处的飞机上,测量人员测得正前方AB两点处的俯角分别是60°和30°,求隧道AB的长.(结果保留根号)
某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
manfen5.com 满分网
时间1小时左右1.5小时左右2小时左右2.5小时左右
人数508012050
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=manfen5.com 满分网,BE=2manfen5.com 满分网.求CD的长和四边形ABCD的面积.

manfen5.com 满分网
Ⅰ.解不等式组manfen5.com 满分网,并把解集在数轴上表示出来.
Ⅱ.计算:(π-3)+manfen5.com 满分网-2sin45°-(manfen5.com 满分网-1
观察下列运算过程:S=1+3+32+33+…+32012+32013   ①,
            ①×3得3S=3+32+33+…+32013+32014   ②,
            ②-①得2S=32014-1,S=manfen5.com 满分网
运用上面计算方法计算:1+5+52+53+…+52013=   
manfen5.com 满分网如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是   
已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是   
有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程   
如图所示,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于   
manfen5.com 满分网
已知分式manfen5.com 满分网的值为零,那么x的值是   
从1至9这9个自然数中任取一个数,使它既是2的倍数又是3的倍数的概率是   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.