|
下列计算结果正确的是( )
A.3a-(-a)=2a B.a3×(-a)2=a5 C.a5÷a=a5 D.(-a2)3=a6 下列四个式子中,x的取值范围为x≥2的是( )
A. ![]() B. ![]() C. ![]() D. ![]() 下列四种调查:
①调查某班学生的身高情况; ②调查某城市的空气质量; ③调查某风景区全年的游客流量; ④调查某批汽车的抗撞击能力. 其中适合用全面调查方式的是( ) A.① B.② C.③ D.④ 纳米是非常小的长度单位,1纳米=10-9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )
A.5×10-10米 B.5×10-9米 C.5×10-8米 D.5×10-7米 -3的绝对值是( )
A.- ![]() B. ![]() C.-3 D.3 如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示). (2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式. (3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值. (4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值. ![]() 如图,在平面直角坐标系中,抛物线y=ax2+bx-2 与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式. (2)求点C在这条抛物线上时m的值. (3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN. ①当点D在这条抛物线的对称轴上时,求点D的坐标. ②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值. (参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为( , )) 探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为______. 甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.
(1)分别求线段BC、DE所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长. ![]() 某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.
(1)求这n名学生中剩饭学生的人数及n的值. (2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比. (3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数. ![]() 如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为12.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.
![]() 某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.
甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.
先化简,再求值:
,其中x= .如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=
于点B、C,则BC的长值为 .![]() 如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数
位于第一象限的图象上,则k的值为 .![]() 如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为 度.
![]() 如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为 .
![]() 吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客 人(用含m、n的代数式表示).
计算:a2•5a= .
如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=
x上一点,则点B与其对应点B′间的距离为( )![]() A. ![]() B.3 C.4 D.5 如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为( )
![]() A. ![]() B. ![]() C.2 D.3 如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为( )
![]() A.46° B.53° C.56° D.71° 如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为( )A.30° B.45° C.60° D.75° 不等式2x<-4的解集在数轴上表示为( )
A. ![]() B. ![]() C. ![]() D. ![]() 我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( )
A.14×106 B.1.4×107 C.1.4×108 D.0.14×108 如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是( )
![]() A. ![]() B. ![]() C. ![]() D. ![]() 的绝对值等于( )A. ![]() B.4 C. ![]() D.-4 如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4
),延长AC到点D,使CD= AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标; (2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式; (3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明) ![]() |