|
如图为△ABC与圆O的重叠情形,其中BC为⊙O的直径.若∠A=70°,BC=2,则图中阴影区域的面积为 π.
![]() 如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A,B,C作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,…,如此下去.则经过第2009次跳动之后,棋子落点的坐标为 .
![]() 在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 .
![]() 已知正比例函数y1=x,反比例函数
,由y1,y2构造一个新函数y=x+ 其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:①该函数的图象是中心对称图形; ②当x<0时,该函数在x=-1时取得最大值-2; ③y的值不可能为1; ④在每个象限内,函数值y随自变量x的增大而增大. 其中正确的命题是 .(请写出所有正确的命题的序号) ![]() 如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=
,则平行四边形ABCD的周长是 .![]() 一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 .
已知
,则-a2-b2009= .如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )
![]() A.-3 B.1 C.5 D.8 如图,是一个工件的三视图,则此工件的全面积是( )
![]() A.85πcm2 B.90πcm2 C.155πcm2 D.165πcm2 如图,是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )
![]() A. ![]() B. ![]() C. ![]() D. ![]() 若关于x的一元二次方程nx2-2x-1=0无实数根,则一次函数y=(n+1)x-n的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 下列命题中,正确命题的有( )个
①一组对边平行且相等的四边形是平行四边形 ②一组邻边相等的平行四边形是正方形 ③对角线互相垂直且相等的四边形是菱形 ④任何三角形都有外接圆,但不是所有的四边形都有外接圆. A.1 B.2 C.3 D.4 已知方程x2-5x+2=0的两个解分别为x1、x2,则2x1-x1x2+2x2的值为( )
A.8 B.-12 C.12 D.-8 下列说法,正确的是( )
A.一个游戏的中奖率是1%,做100次这样的游戏一定会中奖 B.为了解某品牌灯管的使用寿命,可以采用普查的方式 C.一组数据6,8,7,8,9,10的众数和平均数都是8 D.若甲组数据的方差s甲2=0.05,乙组数据的方差s乙2=0.1,则乙组数据比甲组数据稳定 苏州市高度重视科技创新工作,全市科技投入从“十一五”初期的3.01亿元,增加到2011年的7.48亿元.请将7.48亿用科学记数法(保留两个有效数字)记为( )
A.7.48×108 B.7.4×108 C.7.5×108 D.7.5×109 下列各式计算正确的是( )
A. ![]() B. ![]() C.2a2+4a2=6a4 D.(a2)3=a6 在实数
, ,0.101001, 中,无理数的个数是( )A.0个 B.1个 C.2个 D.3个 如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.
(1)求点E、F的坐标(用含m的式子表示); (2)连接OA,若△OAF是等腰三角形,求m的值; (3)如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值. ![]() 已知直线
与x轴y轴分别交于点A和点B,点B的坐标为(0,6)(1)求的m值和点A的坐标; (2)在矩形OACB中,某动点P从点B出发以每秒1个单位的速度沿折线B-C-A运动.运动至点A停止.直线PD⊥AB于点D,与x轴交于点E.设在矩形OACB中直线PD未扫过的面积为S,运动时间为t. ①求s与t的函数关系式; ②⊙Q是△OAB的内切圆,问:t为何值时,PE与⊙Q相交的弦长为2.4? ![]() (1)如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有______个.
(2)如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有______个. (3)如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有______个. (4)如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有______个. (5)拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合平面内可以作为旋转中心的点有多少个?(直接写结论) ![]() 小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)A点所表示的实际意义是______; =______;(2)求出AB所在直线的函数关系式; (3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇? ![]() 如图,某人在一栋高层建筑顶部C处测得山坡坡脚A处的俯角为60°,又测得山坡上一棵小树树干与坡面交界P处的俯角为45°,已知OA=50米,山坡坡度为
(即tan∠PAB= ,其中PB⊥AB),且O、A、B在同一条直线上.(1)求此高层建筑的高度OC; (2)求坡脚A处到小树树干与坡面交界P处的坡面距离AP的长度.(人的高度及测量仪器高度忽略不计,结果保留根号形式) ![]() 6张不透明的卡片,除正面画有不同的图形外,其它均相同,把这6张卡片洗匀后,正面向下放在桌上,另外还有与卡片上图形形状完全相同的地板砖若干块,所有地板砖的长都相等.
(1)从这6张卡片中随机抽取一张,与卡片上图形形状相对应的这种地板砖能进行平面镶嵌的概率是多少? (2)从这6张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少? ![]() 工商银行为改进在上下班高峰的服务水平,随机抽样调查了部分该行顾客在上下班高峰时从开始排队到办理业务所用的时间t(单位:分).下面是这次调查统计分析得到的频数分布表和频数分布直方图.
(2)补全频数分布直方图. (3)据调查顾客对服务质量的满意程度与所用时间t的关系如下:
______. ![]() 如图所示,在平行四边形ABCD的对角线上AC上取两点E和F,若AE=CF.
求证:∠AFD=∠CEB. ![]() (1)解方程:
;(2)解不等式组: 并写出其所有自然数解.(1)计算:
;(2)化简 .图中所示是一条宽为1.5m的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD的宽AB为1m,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD不能超过 m.
![]() 如图,已知AB是⊙O的弦,半径OA=1cm,∠AOB=120°,⊙O上一动点P从A点出发,沿逆时针方向运动到B点,当S△POA=S△AOB时,则点P所经过的弧长(不考虑点P与点B重合的情形)是 .
![]() 如图,已知点G是梯形ABCD的中位线EF上任意一点,若梯形ABCD的面积为20cm2,则图中阴影部分的面积为 .
![]() |
|||||||||||||||||||||||||||||||||||||