如图(甲),水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA的长度为6cm,且与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB垂直地面为止,如图(乙)所示,则O点移动的距离为( )
![]() A.20cm B.24cm C.10πcm D.30πcm 如图,一个扇形铁皮OAB.已知OA=60cm,∠AOB=120°,小华将OA、OB合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为( )
![]() A.10cm B.20cm C.24cm D.30cm 一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为( )
A. ![]() B. ![]() C.3cm D. ![]() 如图,已知⊙O的半径OA=6,∠AOB=90°,则∠AOB所对的弧AB的长为( )
![]() A.2π B.3π C.6π D.12π 若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是( )
A.40° B.80° C.120° D.150° 现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( )
![]() A.9° B.18° C.63° D.72° 小莹准备用纸板制作一顶圆锥形“圣诞帽”,使“圣诞帽”的底面周长为18πcm,高为40cm.裁剪纸板时,小莹应剪出的扇形的圆心角约为( )
A.72° B.79° C.82° D.85° 若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( )
![]() A.1.5 B.2 C.3 D.6 如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )
A.120° B.约156° C.180° D.约208° 如图,如果从半径为9cm的圆形纸片剪去
![]() ![]() A.6cm B. ![]() C.8cm D. ![]() △ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.如图,若
![]() ![]() ![]() A.10cm B.9cm C.8cm D.6cm 如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )
![]() A.4cm B.3cm C.2cm D.1cm 如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )
![]() A.4πcm B.3πcm C.2πcm D.πcm 在半径为12的⊙O中,60°圆心角所对的弧长是( )
A.6π B.4π C.2π D.π 如图1,扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中A点在O′B上,如图2所示,则O点旋转至O′点所经过的轨迹长度为( )
![]() A.π B.2π C.3π D.4π 已知一个正六边形的半径是r,则此正六边形的周长是( )
A.3r B.6r C.12r D.24r 如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C不重合),过动点P作PD∥BA交AC于点D.
(1)若△ABC与△DAP相似,则∠APD是多少度? (2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少? (3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长. ![]() 请你类比一条直线和一个圆的三种位置关系,在图,在①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.
![]() 已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.
![]() (1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF; (2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE; (3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断. 已知⊙O1与⊙O2相交于A,B,且⊙O1的半径为3cm,⊙O2的半径为5cm.
(1)过点B作CD⊥AB分别交⊙O1和⊙O2于C,D两点,连接AC,AD,如图(1),试求 ![]() (2)过点B任画一条直线分别交⊙O1和⊙O2于E,F,连接AE和AF,如图(2),试求 ![]() (3)在解答本题的过程中用到的数学思想方法是______. ![]() 已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点F,连接BD.
(1)求证:△ACG∽△DBG; (2)求证:AC2=AG•AB; (3)若⊙A,⊙O的直径分别为 ![]() ![]() 如图,⊙O、⊙P交于点A、B,连接OP交AB于点H,交两圆于点C、D,∠OAP=90°,AP=3,CP=1.求⊙O的半径和AB的长.
![]() 如图,半径分别为4cm和3cm的⊙O1,⊙O2相交于A,B两点,且O1O2=6cm,过点A作⊙O1的弦AC与⊙O2相切,作⊙O2的弦AD与⊙O1相切.
(1)求证:AB2=BC•BD; (2)两圆同时沿连心线都以每秒1cm的速度相向移动,几秒钟时,两圆相切? (3)在(2)的条件下,三点B,C,D能否在同一直线上?若能,求出移动的时间;若不能,说明理由. ![]() 已知:⊙O1与⊙O2相交于点A、B,过点B作CD⊥AB,分别交⊙O1和⊙O2于点C、D.
(1)如图,求证:AC是⊙O1的直径; (2)若AC=AD, ①如图,连接BO2、O1O2,求证:四边形O1C BO2是平行四边形; ②若点O1在⊙O2外,延长O2O1交⊙O1于点M,在劣弧 ![]() ![]() ![]() 如图1,两半径为r的等圆⊙O1和⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1和⊙O2于A,B两点,连接NA,NB.
(1)猜想点O2与⊙O1有什么位置关系,并给出证明; (2)猜想△NAB的形状,并给出证明; (3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明. ![]() 如图,⊙O1与⊙O2外切于点P,外公切线AB切⊙O1于点A,切⊙O2于点B,
(1)求证:AP⊥BP; (2)若⊙O1与⊙O2的半径分别为r和R,求证: ![]() (3)延长AP交⊙O2于C,连接BC,若r:R=2:3,求tan∠C的值. ![]() 如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以线段AB为直径的圆与直线O1O2的位置关系,并说明理由.
![]() 如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.
![]() 如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.
(1)求证:PC平分∠BPD; (2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论. ![]() 如图所示,分别按A、B两种方法用钢丝绳捆扎圆形钢管的截面图:设A、B两种方法捆扎所需的绳子的长分别为a、b(不计接头部分),则a、b的大小关系为:a______b.(填“<”“=“或“>”)
![]() |