满分5 > 高中数学试题 >

设函数f(x)=lnx-ax2-bx. (Ⅰ)当a=b=时,求f(x)的最大值;...

设函数f(x)=lnx-manfen5.com 满分网ax2-bx.
(Ⅰ)当a=b=manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+manfen5.com 满分网ax2+bx+manfen5.com 满分网(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I )先求定义域,再研究单调性,从而求最值. (II)先构造函数F(x)再由以其图象上任意一点P(x,y)为切点的切线的斜率k≤恒成立,知导函数≤恒成立,再转化为所以求解. (III)先把程2mf(x)=x2有唯一实数解,转化为所以x2-2mlnx-2mx=0有唯一实数解,再利用单调函数求解. 【解析】 (Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分) 当时,, .(2分) 令f′(x)=0,解得x=1. 当0<x<1时,f′(x)>,此时f(x)单调递增; 当x>1时,f′(x)<0,此时f(x)单调递减.(3分) 所以f(x)的极大值为,此即为最大值.(4分) (Ⅱ), 所以,在x∈(0,3]上恒成立,(6分) 所以,x∈(0,3](7分) 当x=1时,取得最大值.所以a≥.(9分) (Ⅲ)因为方程2mf(x)=x2有唯一实数解, 所以x2-2mlnx-2mx=0有唯一实数解. 设g(x)=x2-2mlnx-2mx,则. 令g′(x)=0,得x2-mx-m=0. 因为m>0,x>0, 所以(舍去),,(10分) 当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减, 当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增. 当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分) 因为g(x)=0有唯一解,所以g(x2)=0. 则,即 所以2mlnx2+mx2-m=0, 因为m>0,所以2lnx2+x2-1=0.(12分) 设函数h(x)=2lnx+x-1, 因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分) 因为h(I)=0,所以方程的解为(X2)=1,即, 解得(14分)
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和记为Sn,at=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=log3an+1,Tn是数列manfen5.com 满分网的前n项和,求T2011的值.
查看答案
在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
从某小组的5名女生和4名男生中任选3人去参加一项公益活动.
(1)求所选3人中恰有一名男生的概率;
(2)求所选3人中男生人数ξ的分布列,并求ξ的期望.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网
(1)求manfen5.com 满分网
(2)求函数f(x)=manfen5.com 满分网单调增区间.
查看答案
给出下列命题:
①半径为2,圆心角的弧度数为manfen5.com 满分网的扇形面积为manfen5.com 满分网
②若α、β为锐角,tan(α+β)=manfen5.com 满分网,tan β=manfen5.com 满分网,则α+2β=manfen5.com 满分网
③函数y=cos(2x-manfen5.com 满分网)的一条对称轴是x=manfen5.com 满分网
manfen5.com 满分网是函数y=sin(2x+ϕ)为偶函数的一个充分不必要条件.
其中真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.