求函数f(x)=3x-x3导数,研究其最小值取到位置,由于函数在区间(a2-12,a)上有最小值,故最小值点的横坐标是集合(a2-12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围
【解析】
由题 f'(x)=3-3x2,
令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1
由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数
故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值
∴a2-12<-1<a,解得-1<a<
又当x=2时,f(2)=-2,故有a≤2
综上知a∈(-1,2]
故选C